F-17 (018) 2019.Fall Q24 (Problem)

Reading: Friedland 17 (ULAE)

Model: 2019.Fall #24

Problem Type: Kittel approach for ULAE

 Problem
 Use the
 Kittel
 approach to estimate the
 unpaid
 ULAE
 at CY
 2024
 year-end

55% <== Expected Clams Ratio (ECR)

claims-made <== policy type

	paid	incurred	paid		
CY	claims	claims	ULAE		
2021	16,591	32,700	1,991		
2022	16,400	35,800	1,825		
2023	18,100	34,500	1,825		
2024	17,100	32,400	1,825		

Report	earned	paid	reported	%
Year	premium	claims	claims	unrpt'd
2021	68,000	20,900	28,700	12.0%
2022	65,900	12,300	23,500	21.6%
2023	66,700	7,300	19,000	36.7%
2024	64,000	4,200	17,100	68.4%

Step 1: Kittel ULAE ratio ==> (paid ULAE) / AVG [(paid claims) , (incurred claims)]

	paid	average	ULAE		
CY	ULAE	(pd, inc)	ratio		
2021	1,991	24,646	8.1%	Sometimes there is a trend in ULAE ratios.	
2022	1,825	26,100	7.0%	If so, you may need to use judgement	
2023	1,825	26,300	6.9%	instead of just selecting the average	
2024	1,825	24,750	7.4%		
7.4% <== selected (average)					

Step 2a calculate ultimate (use Bornhuetter-Ferguson reported method)

(usually, we are given case O/S and IBNR in these types of problems but here we have to calculate it ourselves)

_	AY	ultimate	=	reported	+	%unrptd	х	ECR	х	EP
	2021	33,188	=	28,700	+	12.0%	х	55%	х	68,000
	2022	31,329	=	23,500	+	21.6%	х	55%	х	65,900
	2023	32,463	=	19,000	+	36.7%	х	55%	х	66,700
_	2024	41,177	=	17,100	+	68.4%	х	55%	Х	64,000
		138,157		88,300						_

Step 2b calculate case O/S and IBNR in total for all years

Trick: Since these policies are claims-made, there is no pure IBNR (no IBNYR).

49,857

Step 3 apply formula for unpaid ULAE

Therefore

IBNER

Note: Part (b) of this exam problem asked how the calculations would change if the policies were "occurrence" instead of claims-made.

The answer is that "occurrence" policies have pure IBNR (IBYNR). You could use the same formula as in Step 3, but you would need a way of separating the total IBNR into its components IBNER and IBNYR.