(Fr17.ULAE) Practice (A) a-Question

Reading: Friedland 17 (ULAE)
Model: 2018.Fall #22

Problem Type: Classical/Kittel approach for ULAE with relaxation of 50/50 assumption

Random A

Use the

classical

approach to estimate the

unpaid

ALAE

for AY

2020

occurrence <== policy type

	paid	paid	incurred
CY	ULAE	claims	claims
2016	0	0	0
2017	54,000	460,000	540,000
2018	51,000	329,000	570,000
2019	47,000	397,000	460,000
2020	60,000	314,000	520,000

<== incurred includes reported & IBNR

124,000	case outstanding (total across all AYs)				
118,000	total IBNR (total across all AYs)				
42%	% of total IBNR attributed to future case development on known claims				

percent of unallocated work that occurs when a claim is openedpercent of unallocated work that occurs when a claim is closed

Step 1: classical ULAE ratio ==> (paid ULAE) / (paid claims)

	paid	paid	ULAE
CY	ULAE	claims	ratio
2016	0	0	
2017	54,000	460,000	11.7%
2018	51,000	329,000	15.5%
2019	47,000	397,000	11.8%
2020	60,000	314,000	19.1%

Sometimes there is a trend in ULAE ratios. If so, you may need to use judgement instead of just selecting the average

14.5% <== selected (average)

Step 2: apply formula for unpaid ULAE

unpaid ULAE = (ULAE ratio) x $\begin{bmatrix} 45\% & x \\ \end{bmatrix}$ (Case + IBNER) + 100% x $\end{bmatrix}$ IBNYR

where:

therefore:

unpaid ULAE	=	15	5% x	[45% x	173,560	+	100% x	68,440]
unpaid ULAE	=	21,285	<== final answer						

Reading: Friedland 17 (ULAE)
Model: 2018.Spring #23

Problem Type: Classical/Kittel approach for ULAE with relaxation of 50/50 assumption

Random B

Use the

classical

approach to estimate the

unpaid

ALAE

for AY

2022

occurrence

<== policy type

	paid	paid	incurred
CY	ULAE	claims	claims
2018	0	0	0
2019	45,000	371,000	430,000
2020	49,000	309,000	500,000
2021	51,000	419,000	510,000
2022	44.000	305.000	500.000

<== incurred includes reported & IBNR

116,000	case outstanding (total across all AYs)
69,000	total IBNR (total across all AYs)
73%	% of total IBNR attributed to future case development on known claims

70% percent of unallocated work that occurs when a claim is opened percent of unallocated work that occurs when a claim is closed

Step 1: classical ULAE ratio ==> (paid ULAE) / (paid claims)

	paid	paid	ULAE
CY	ULAE	claims	ratio
2018	0	0	
2019	45,000	371,000	12.1%
2020	49,000	309,000	15.9%
2021	51,000	419,000	12.2%
2022	44,000	305,000	14.4%

Sometimes there is a trend in ULAE ratios. If so, you may need to use judgement instead of just selecting the average

13.7% <== selected (average)

Step 2: apply formula for unpaid ULAE

unpaid ULAE = (ULAE ratio) x [30% x (Case + IBNER) + 100% x IBNYR]

where:

therefore:

 unpaid ULAE
 =
 14%
 x
 [30% x 166,370 + 100% x 18,630]

 unpaid ULAE
 =
 9,356
 <== final answer</td>