

PowerPack Station 2: One-Stop PDF PRICING

Driving 01 02 04	Desig Former des	
Pricing 01-03-04	Basic Formulas	3
	AY and CY Losses	5
Drising OFa	Exposure Aggregation	
Pricing 05a	EP @ CRL [1 Rate Change] EP @ CRL [2 Rate Changes]	11
		13
	EP @ CRL [6-month policies] EP @ CRL [Policy Years]	15
	EP @ CRL [Rate & Law Changes]	17
Pricing 05b	1-Step Prm Trd	19
THEME 030	2-Step Prm Trd	21
	Premium Development	23
Pricing 06	Excess Loss Factor	25
THEMIS OU	Benefit Change	27
	Trend Selection	29
	Trend Period for Losses	31
	Leveraged Effect of Limits	33
Pricing 07-08	Pure Premium Method	35
Fricing 07-08	Expenses - All Variable	37
	·	39
	Expenses - Premium-Based Expenses - Exposure-Based	41
	Loss Ratio Method	43
Drising 00	Relativities - Pure Premium Method	45
Pricing 09		43 47
	Relativities - with Credibility Relativities - Loss Ratio Method	49
		51
	Relativities - Exposure-Based	_
Drising 11	Relativities - Detecting Distortion ILFs - Uncensored Data	53 55
Pricing 11	ILFs - Censored Data	57
		59
	Deductible Relativities - Grd-up Losses Deductible Relativities - Net Losses	61
	WC - Premium Discount	63
	WC - Loss Constant	65
	ITV - Rate per \$1,000	67
Drising 12 12	ITV - Co-insurance	69 71
Pricing 12-13	C of C - Harwayne's Method	
	C of C - Increased Limits Analysis	73
	C of C - Limits Analysis	75 77
	C of C - Limits Analysis	
Drising 14	Lifetime Value Analysis	79 81
Pricing 14	Additive Expense Fee	83
	Extension of Exposures Method AARD Method	85
	A(Δ)ARD Method	87
	Limiting Premium Effect - Non-Base Level	89
Drising 15	Limiting Premium Effect - Base Level	91
Pricing 15	Experience Modification - CGL	93
	Experience Modification - WC	95
	Loss-Rated Composite Rating	97
	Large Deductible Policies	99
Duining A !!	Retrospective Rating	101
Pricing Appendix	HO Indication	103
	WC Indication	105

Pricing-01: Basic Formulas (Problem)

Reading: Werner 01: Introduction

Model: Original

Problem Type: Formulas - Calculating

Find Frequency

Severity Pure Premium Loss Ratio

Loss Adjustment Expense Ratio

Loss & LAE Ratio

Underwriting Expense Ratio
Operating Expense Ratio

Combined Ratio Retention Ratio Close Ratio

Given

counts	16
X	100
L	100,800
EP	144,000
WP	120,000
LAE	26,200
Comm, Other, TLF	14,400
General Expense	5,760

# of policies renewed	57
# of potential renewal policies	100
# of accepted quotes	126
# of quotes	200

```
F
                                                                                                                      0.050
                                                       Χ
                                                                            5
                                                                                                100
                                                                                                           =
                                counts
                                                                  =
          S
                                                                                                                     21,060
                                                     counts
                                                                  =
                                                                         105,300
                                                                                                 5
                                                                                                           =
                                   L
          PP
                                   L
                                                       Χ
                                                                         105,300
                                                                                                100
                                                                                                                      1,053
          LR
                                   L
                                                       ΕP
                                                                         105,300
                                                                                              140,400
                                                                                                           =
                                                                                                                       75%
          LAER
                                  LAE
                                                        L
                                                                  =
                                                                          28,400
                                                                                              105,300
                                                                                                                       27%
Method 1: LR & LAER
                                                       ΕP
                                                                           LAE
                                                                                                ΕP
                         =
                                  Loss
                                105,300
                                                     140,400
                                                                          28,400
                                                                                              140,400
                         =
                         =
                                  75%
                                                                           20%
                                  95%
          Alternate calculation for Loss & LAE Ratio (LR & LAER):
Method 2: LR & LAER
                                  LR
                                                                                     LAER
                                                                  1
                                  75%
                                                                  1
                                                                                     27%
                                             х
                                                        (
                                                                                            )
                                  95%
                         =
          UWER
                         =
                                (Comm + Oth + TLF)
                                                        /
                                                                 WP
                                                                                    General
                                                                                                           ΕP
                                13,200
                                                        /
                                                               120,000
                                                                                     2,810
                                                                                                        140,400
                         =
                                 13%
          OER
                                 UWER
                                                                                                           ΕP
                                                                                     LAE
                         =
                                  13%
                                                                                    28,400
                         =
                                                                                                        140,400
                                  13%
                                                                                                20%
                         =
                                  33%
          COR
                                  LR
                                                      LAE
                                                                  /
                                                                            ΕP
                                                                                               UWER
                         =
                         =
                                  75%
                                                     28,400
                                                                  /
                                                                         140,400
                                                                                       +
                                                                                                13%
                                  75%
                                                                 20%
                                                                                                13%
                         =
                                 100%
                         =
                               # of policies renewed
                                                                        # of potential renewal policies
          RR
                         =
                               60
                                                                        100
                               60%
                         =
          RR
                               # of accepted quotes
                                                                        # of quotes
                         =
                               90
                                                                        200
                         =
                               <u>45%</u>
```

Pricing-03: AY and CY Losses (Problem)

120

Reading: Werner 03: Data **Model:** 2017.Spring #3

Problem Type: Calculate AY and CY incurred losses

C

2020.05.01

Find a incurred loss for AY 2020 as of 2021.08.01 date format: yyyy.mm.dd

b incurred loss for CY 2021

		accident	transaction	incremental	ending
Given	claim	date	date	payment	case reserve
	Α	2020.10.01	2021.01.01	0	280
	Α	2020.10.01	2021.07.01	300	0
	В	2022.07.01	2023.05.01		
	В	2022.07.01	2023.07.01		
	В	2022.07.01	2023.09.01		
	В	2022.07.01	2024.05.01		
	С	2020.05.01	2020.07.01	140	160
	С	2020.05.01	2021.03.01	20	160

2022.01.01

20

a (i) SUM only rows with an accident date in:

(ii) calculate change in case reserve:

(iii) calculate incurred loss for each row as:

(iv) sum the incurred losses:

2020 and tra

and transaction date on or prior to:

2021.08.01

(current ending case reserve) - (prior ending case reserve)

(incremental paid) + (change in case reserve)

600 <=== final answer

		accident	transaction	incremental	ending	change in	incurred
use row?	claim	date	date	payment	case reserve	case reserve	loss
yes	Α	2020.10.01	2021.01.01	0	280	280	280
yes	Α	2020.10.01	2021.07.01	300	0	-280	20
no	В	2022.07.01	2023.05.01	0	0	0	
no	В	2022.07.01	2023.07.01	0	0	0	
no	В	2022.07.01	2023.09.01	0	0	0	
no	В	2022.07.01	2024.05.01	0	0	0	
yes	С	2020.05.01	2020.07.01	140	160	160	300
yes	С	2020.05.01	2021.03.01	20	160	0	20
yes	С	2020.05.01	2022.01.01	20	120	-40	-20
							_
						final answer ==	> 600

(i) SUM rows with <u>any</u> accident date:

all

and transaction date in:

2021

(ii) same as part (a)(iii) same as part (a)

(iv) same as part (a)

		accident	transaction	incremental	ending	change in	incurred
use row?	claim	date	date	payment	case reserve	case reserve	loss
yes	Α	2020.10.01	2021.01.01	0	280	280	280
yes	Α	2020.10.01	2021.07.01	300	0	-280	20
	В	2022.07.01	2023.05.01	0	0	0	
	В	2022.07.01	2023.07.01	0	0	0	
	В	2022.07.01	2023.09.01	0	0	0	
	В	2022.07.01	2024.05.01	0	0	0	
	С	2020.05.01	2020.07.01	140	160	160	
yes	С	2020.05.01	2021.03.01	20	160	0	20
	С	2020.05.01	2022.01.01	20	120	-40	
						final answer =	=> 320

Pricing-04: Exposure Aggregation (Problem)

Reading:Werner 04: ExposuresModel:Basic FormulasProblem Type:Exposure Aggregation 1

Find Calculate the following metrics for the given time period or "as of" date.

 WE
 for
 CY
 2024

 EE
 for
 CY
 2024

 UEE
 as of
 2025 . 09 . 15

 IFE
 as of
 2025 . 09 . 15

Given

policy	# policies	effective date	term	cancel date
Α	3	2025 . 06 . 01	6	
В	3	2025 . 04 . 01	6	
С	3	2025 . 09 . 01	6	
D	2	2023 . 07 . 01	12	2024 . 04 . 30

CY	CY	as of	as of
2025	2025	2024m07d01	2024m07d01
WE	EE	UEE	IFE
0.00	0.00	0.00	0.00
0.62	0.62	0.00	0.00
0.00	0.00	0.38	3.00
0.00	0.00	0.33	2.00
0.62	0.62	0.71	5.00

<==== final answer

Pricing-05: EP @ CRL [1 Rate Change] (Problem)

Reading: Model: **Pricing Components**

Given

Problem Type: EP @CRL: Annual Policies with 1 Rate Change

Werner 05: Premium

Find Calculate EP @ Current Rate Level for CY 2020 and 2021 assuming annual policies and 1 rate change.

EP for CY 2020 120 EP for CY 2021 290

1% rate change amount 2020.07.01 rate change date

* Assume policies are written uniformly over time.

Step 1 calculate CRL as the product of rate changes

CRL = 1.0 x (1 + chg)= 1.00 x 1.01= 1.0100

Step 2a calculate ARL (Average Rate Level) for CY 2020 using simple geometry

Area 1 = 0.8750 Area 2 = 0.1250

ARL 2020 = (Area 1 x rt level 1) + (Area 2 x rt level 2) = (0.875 x 1.00) + (0.125 x 1.01) = 1.0013

Step 2b calculate ARL (Average Rate Level) for CY 2021 using simple geometry

Area 3 = 0.1250 Area 4 = 0.8750

ARL 2021 = (Area 3 x rt level 1) + (Area 4 x rt level 2) = (0.125 x 1.00) + (0.875 x 1.01) = 1.0088

Step 3 calculate CRLFs (Current Rate Level Factos), also called OLFs (On-Level Factors)

CRLF 2020 = CRL / ARL 2020 = 1.0100 / 1.0013 = 1.0087 CRLF 2021 = CRL / ARL 2021 = 1.0100 / 1.0088 = 1.0012

Step 4 calculate EP @ CRL

EP 2020 @ CRL = EP 2020 x CRLF '20 = 120 x 1.0087 = 121.0 EP 2021 @ CRL = EP 2021 x CRLF '21 = 290 x 1.0012 = 290.3 (final answers)

Pricing-05: EP @ CRL [2 Rate Changes] (Problem)

* Assume policies are written uniformly over time.

Reading: Werner 05: Premium **Model:** Pricing Components

Problem Type: EP @CRL: Annual Policies with 2 Rate Changes

Find Calculate EP @ Current Rate Level for CY 2020 and 2021 assuming annual policies and 2 rate changes.

Given EP for CY 2020

EP for CY 2020 130 EP for CY 2021 230 EP for CY 2022 330

rate change 1 -3%
rate change 1 date 2021 . 01 . 01

rate change 2 -6%
rate change 2 date 2022 . 01 . 01

Step 1 calculate CRL as the product of rate changes

```
CRL = 1.0 x (1 + chg1) x (1 + chg2)
= 1.00 x 0.97 x 0.94
= 0.9118
```

Step 2a calculate ARL (Average Rate Level) for CY 2020 using simple geometry

```
Area 1 = 1.0000
Area 2 = 0.0000
Area 3 = 0.0000
```

Step 2b calculate ARL (Average Rate Level) for CY 2021 using simple geometry

```
Area 4 = 0.5000
Area 5 = 0.5000
Area 6 = 0.0000
```

ARL 2021 =
$$(Area 4 x rt level 1) + (Area 5 x rt level 2) + (Area 6 x rt level 3)$$

= $(0.5 x 1.00) + (0.5 x 0.97) (0 x 0.9118)$
= 0.9850

Step 2c calculate ARL (Average Rate Level) for CY 2022 using simple geometry

```
Area 7 = 0.0000
Area 8 = 0.5000
Area 9 = 0.5000
```

```
ARL 2021 = (Area 7 x rt level 1) + (Area 8 x rt level 2) + (Area 9 x rt level 3)

= (0 x 1.00) + (0.5 x 0.97) (0.5 x 0.9118)

= 0.9409
```

Step 3 calculate CRLFs (Current Rate Level Factos), also called OLFs (On-Level Factors)

```
CRLF 2020
                      CRL
                              / ARL 2020 =
                                                              1.0000
                                                                            0.9118
                                                 0.9118
CRLF 2021
                      CRL
                                 ARL 2021
                                                 0.9118
                                                              0.9850
                                                                            0.9257
CRLF 2022
                      CRL
                              / ARL 2021
                                                 0.9118
                                                              0.9409
                                                                            0.9691
```

Step 4 calculate EP @ CRL

```
EP 2020 @ CRL
                          EP 2020
                                         CRLF '20
                                                                        0.9118
                                                                                        118.5
                   =
                                                          130
                                                                                  =
EP 2021 @ CRL
                          EP 2021
                                         CRLF '21
                                                           230
                                                                        0.9257
                                                                                        212.9
                   =
                                                                                  =
                                     Х
                                                                   х
EP 2021 @ CRL
                          EP 2021
                                         CRLF '21
                                                           330
                                                                        0.9691
                                                                                        319.8
                                                                                     (final answers)
```

Pricing-05: EP @ CRL [6-month policies] (Problem)

* Assume policies are written uniformly over time.

Reading: Werner 05: Premium Model: **Pricing Components** EP @CRL: 6-Month Policies Problem Type:

Find Calculate EP @ Current Rate Level for CY 2020 and 2021 assuming 6-month policies.

EP for CY 2020 Given

100 210 EP for CY 2021 330

EP for CY 2022

8% rate change 1 2020.04.01 rate change 1 date

rate change 2 -5% rate change 2 date 2021.02.01

Step 1 calculate CRL as the product of rate changes

```
CRL = 1.0 x (1 + chg1) x (1 + chg2)
= 1.00 x 1.08 x 0.95
= 1.0260
```

Step 2a calculate ARL (Average Rate Level) for CY 2020 using simple geometry

```
Area 1 = 0.5000
Area 2 = 0.5000
Area 3 = 0.0000
```

```
ARL 2020 = (Area 1 x rt level 1) + (Area 2 x rt level 2) + (Area 3 x rt level 3)

= (0.5 x 1.00) + (0.5 x 1.08) (0 x 1.026)

= 1.0400
```

Step 2b calculate ARL (Average Rate Level) for CY 2021 using simple geometry

```
Area 4 = 0.0000
Area 5 = 0.3333
Area 6 = 0.6667
```

```
ARL 2021 = (Area 4 x rt level 1) + (Area 5 x rt level 2) + (Area 6 x rt level 3)

= (0 x 1.00) + (0.3333333 x 1.08) (0.666666 x 1.026)

= 1.0440
```

Step 2c calculate ARL (Average Rate Level) for CY 2022 using simple geometry

```
Area 7 = 0.0000
Area 8 = 0.0000
Area 9 = 1.0000
```

```
ARL 2021 = (Area 7 x rt level 1) + (Area 8 x rt level 2) + (Area 9 x rt level 3)

= (0 x 1.00) + (0 x 1.08) (1 x 1.026)

= 1.0260
```

Step 3 calculate CRLFs (Current Rate Level Factos), also called OLFs (On-Level Factors)

```
CRLF 2020
                      CRL
                               / ARL 2020
                                                               1.0400
                                                                             0.9865
                                           =
                                                 1.0260
CRLF 2021
                      CRL
                                  ARL 2021
                                                 1.0260
                                                               1.0440
                                                                             0.9828
CRLF 2022
                      CRL
                              / ARL 2021
                                                 1.0260
                                                               1.0260
                                                                             1.0000
```

Step 4 calculate EP @ CRL

```
EP 2020 @ CRL
                          EP 2020
                                         CRLF '20
                                                          100
                                                                        0.9865
                                                                                         98.7
                   =
                                                                                  =
EP 2021 @ CRL
                          EP 2021
                                         CRLF '21
                                                                        0.9828
                                                                                        206.4
                   =
                                                           210
                                     Х
EP 2021 @ CRL
                          EP 2021
                                         CRLF '21
                                                           330
                                                                        1.0000
                                                                                        330.0
                                                                                      (final answers)
```

Pricing-05: EP @ CRL [Policy Years] (Problem)

* Assume policies are written uniformly over time.

Reading: Werner 05: Premium **Model:** Pricing Components

Problem Type: EP @CRL: Policy Year Policies (Annual Policies)

Find Calculate EP @ Current Rate Level for PY 2020 and PY 2021 assuming annual policies.

Given EP for PY 2020

EP for PY 2020 150 EP for PY 2021 290 EP for PY 2022 390

rate change 1 3%
rate change 1 date 2021 . 04 . 01

rate change 2 4%
rate change 2 date 2021 . 10 . 01

Step 1 calculate CRL as the product of rate changes

```
CRL = 1.0 x (1 + chg1) x (1 + chg2)
= 1.00 x 1.03 x 1.04
= 1.0712
```

Step 2a calculate ARL (Average Rate Level) for CY 2020 using simple geometry

```
Area 1 = 1.0000
Area 2 = 0.0000
Area 3 = 0.0000
```

```
ARL 2020 = (Area 1 x rt level 1) + (Area 2 x rt level 2) + (Area 3 x rt level 3)

= (1 x 1.00) + (0 x 1.03) (0 x 1.0712)

= 1.0000
```

Step 2b calculate ARL (Average Rate Level) for CY 2021 using simple geometry

```
Area 4 = 0.2500
Area 5 = 0.5000
Area 6 = 0.2500
```

```
ARL 2021 = (Area 4 x rt level 1) + (Area 5 x rt level 2) + (Area 6 x rt level 3)

= (0.25 x 1.00) + (0.5 x 1.03) (0.25 x 1.0712)

= 1.0328
```

Step 2c calculate ARL (Average Rate Level) for CY 2022 using simple geometry

```
Area 7 = 0.0000
Area 8 = 0.0000
Area 9 = 1.0000
```

```
ARL 2021 = (Area 7 x rt level 1) + (Area 8 x rt level 2) + (Area 9 x rt level 3)

= (0 x 1.00) + (0 x 1.03) (1 x 1.0712)

= 1.0712
```

Step 3 calculate CRLFs (Current Rate Level Factos), also called OLFs (On-Level Factors)

```
CRLF 2020
                      CRL
                              / ARL 2020 =
                                                 1.0712
                                                              1.0000
                                                                            1.0712
CRLF 2021
                      CRL
                                 ARL 2021
                                                 1.0712
                                                               1.0328
                                                                            1.0372
CRLF 2022
                      CRL
                              / ARL 2021
                                                 1.0712
                                                              1.0712
                                                                            1.0000
```

Step 4 calculate EP @ CRL

```
EP 2020 @ CRL
                          EP 2020
                                         CRLF '20
                                                          150
                                                                       1.0712
                                                                                       160.7
                  =
                                                                                  =
EP 2021 @ CRL
                          EP 2021
                                         CRLF '21
                                                          290
                                                                        1.0372
                                                                                       300.8
                  =
                                     Х
EP 2021 @ CRL
                          EP 2021
                                         CRLF '21
                                                          390
                                                                        1.0000
                                                                                       390.0
                                                                                     (final answers)
```

Pricing-05: EP @ CRL [Rate Law Changes] (Problem)

* Assume policies are written uniformly over time.

Reading: Werner 05: Premium **Model:** Pricing Components

Problem Type: EP @CRL: Rate & Law Changes (Annual Policies)

Find Calculate EP @ Current Rate Level for CY 2020 and 2021 assuming annual policies.

Given EP for PY 2020

EP for PY 2020 130 EP for PY 2021 280 EP for PY 2022 310

rate change 1 -2%
rate change 1 date 2021.01.01

law change 7%
law change date 2020 . 05 . 01

Step 1 calculate CRL as the product of rate changes

```
CRL = 1.0 	 x 	 (1 + chg1) 	 x 	 (1 + chg2)
= 1.00 	 x 	 0.98 	 x 	 1.07
= 1.0486
```

Step 2a calculate ARL (Average Rate Level) for CY 2020 using simple geometry

```
Area 1 = 0.3333

Area 2 = 0.6667

ARL 2020 = (Area 1 x rt |v| 1a) + (Area 2 x rt |v| 1b)

= (0.3333 x 1.00) + (0.6667 x 1.07)

= 1.0467
```

Step 2b calculate ARL (Average Rate Level) for CY 2021 using simple geometry

```
Area 3
                 0.0000
                 0.5000
Area 4
Area 5
                 0.0000
                 0.5000
Area 6
                                                                            x rt lvl 2a) + (Area 6
ARL 2021
                            rt lvl 1a) + (Area 4
                                                  x rt lvl 1b) + (Area 5
               (Area 3 x
                               1.00) + (0.5)
                                                         1.07) (0
                                                                                   1.07) + (0.5)
               (0
```

Step 2c calculate ARL (Average Rate Level) for CY 2022 using simple geometry

1.0593

```
Area 7 = 0.0000

Area 8 = 1.0000

ARL 2021 = (Area 7 x rt |v| 2a) + (Area 8 x rt |v| 2b)

= (0 x 1.07) + (1 x 1.0486)

= 1.0486
```

Step 3 calculate CRLFs (Current Rate Level Factos), also called OLFs (On-Level Factors)

```
CRLF 2020
                 CRL
                        / ARL 2020 =
                                        1.0486
                                                    1.0467
                                                                 1.0018
CRLF 2021
                       / ARL 2021 =
                                        1.0486
                                                    1.0593
                                                                 0.9899
CRLF 2022
                 CRL
                      / ARL 2021 =
                                        1.0486
                                                    1.0486
                                                                 1.0000
```

Step 4 calculate EP @ CRL

```
EP 2020 @ CRL
                   EP 2020 x CRLF '20 =
                                              130
                                                         1.0018
                                                                      130.2
EP 2021 @ CRL
                   EP 2021 x CRLF '21 =
                                              280
                                                         0.9899
                                                                      277.2
EP 2021 @ CRL
                   EP 2021 x CRLF '21 =
                                                                      310.0
                                              310
                                                         1.0000
                                                                    (final answers)
```

x rt lvl 2b)

1.0486)

Pricing-05: 1-Step Prm Trd (Problem)

Reading: Werner 05: Premium Model: **Pricing Components**

Problem Type: Trend Period for 1-Step Premium Trending

Find Calculate the following quantities:

policy term:

AWD for policies earned during the historical period AWD for policies written during the effective period (b)

(c) AED for policies earned during the historical period

(d) AED for policies written during the effective period

months

trend period for 1-step trending (e)

Given historical period:

2021 CY effective date: 2022 01 rates in effect for 12 months

12

(year, month, day)

AWD	AWD for his) for historical and effective period						<u>year</u>	month	day
	AWD 1	=	(mid-point of	mid-point of historical period) - 0.5 x (term)			=	2021	01	01
	AWD 2	=	(mid-point of	mid-point of effective period)			=	2022	10	01
	trend period	=	AWD 2	-	AWD 1					
		=	1.75 year(s)							
AED	AED for histo	rical ar	d effective perio	od						
	AED 1	=	(mid-point of	historica	al period)		=	2021	07	01
	AED 2	=	(mid-point of	effective	e period) + 0.5 x (ter	rm)	=	2023	04	01
	trend period	=	AED 2	-	AED 1					
		=	1.75 year(s)							

st The trend period is the same regardless of whether you use written or earned dates.

Pricing-05: 2-Step Prm Trd (Problem)

Reading: Werner 05: Premium

Model: 2017.Fall #1

Problem Type: 2-Step Premium Trending

Find Calculate the premium trend factor for each year for the given rate change effective date using 2-step trending.

Given AEP AWP

	@	@	
CY	CRL	CRL	
2021	10	12	
2022	11	13	
2023	12	13	

projected premium trend	-8.0%
AEP @ CRL for 2023 Q4	480
AWP @ CRL for 2023 Q4	16

effective date: rates in effect for policy term:

2026	4	
6	months	
6	months	

(year, month, day)

Step 1	adjustment factor	=	(lastest AWP @ CRL)	/	(AEP @ CRL for each CY)

	latest				step 1
CY	AWP		CY AEP		factor
2021	16	/	10	=	1.600
2022	16	/	11	=	1.455
2023	16	/	12	=	1.333

Step 2 trend period for step 2

=	(AWD for la	atest availab	ole quarter)	to	(AWD of effective period		
=	2023	11	15	to	2026	07	
=	31.5	months			·		
=	2.625	years					

trend factor for step 2

= (1 + -8.0%) ^ 2.625 = 0.8034

Final Result:

					premium		
	step 1		step 2		trend		
CY	factor		factor		factor		
2021	1.600	х	0.8034	=	1.285	<====	final answer
2022	1.455	х	0.8034	=	1.169	<====	final answer
2023	1.333	Х	0.8034	=	1.071	<====	final answer

Reading: Werner 05: Premium Model: Pricing Components
Problem Type: Premium Development

Find Calculate the PY premium development factor year-end: 2026

annual policy per month in

2025 (assume first day of month)

Estimated premium at policy inception: 750

Months after policy expiration until first audit: 9

Historical upward premium development at audit 15%

WC carrier writes

Given

```
2026
 Step 1 calculate number of policies with audit complete by year-end
                                   12
                                                    ( months after policy expiration until first audit )
                                   12
Step 2a calculate PY written premium as of year-end
                                                               2026
      Current PY WP
                                   n
                                                       (est. premium)
                                                                                    ( historical upward development )
                                (12 - n)
                                                       (est. premium)
                                                             750
                                   3
                                                                                       1.15
                                              Х
                                                             750
                                 9,338
Step 2b calculate final PY written premium at year-end
                                                                          (all policy audits are now complete)
         Final PY WP
                                   12
                                              х
                                                       (est. premium)
                                                                                    ( historical upward development )
                                   12
                                                             750
                                                                                       1.15
                                 10,350
Step 3 calcuate premium development factor
             PDF
                                 step 2b
                                                      step 2a
                                 10,350
                                                      9,338
                                1.1084
                               (final answer)
```

Pricing-06: Excess Loss Factor (Problem)

Reading:Werner 06: Loss + LAEModel:Pricing ComponentsProblem Type:Excess Loss Factor

Find (a) Calculate the excess loss factor given a large loss threshold of

500

(b) Restate the AY 2025 reported losses using the excess loss factor.

Given

		# of	ground-up
	reported	excess	excess
AY	losses	claims	losses
2020	50,000	16	10,015
2021	40,400	3	2,828
2022	45,900	2	3,352
2023	40,950	23	13,450
2024	53,100	2	2,993
2025	62,500	3	5,425
total	292,850	49	38.063

(All loss dollars in 000s)

(a) fill in the table using the formulas indicated

	(1)	(2)	(3)	(4)	(5)	(6)
		# of	ground-up	losses	non	
	reported	excess	excess	excess of	excess	excess
AY	losses	claims	losses	1,000	losses	ratio
2020	100,000	4	6,913	2,913	97,087	3.0%
2021	99,750	8	12,112	4,112	95,638	4.3%
2022	96,390	10	11,983	1,983	94,407	2.1%
2023	88,500	14	19,790	5,790	82,710	7.0%
2024	116,660	17	24,325	7,325	109,335	6.7%
2025	122,550	6	13,803	7,803	114,747	6.8%
Totals	623,850	59	88,926	29,926	593,924	5.0%

(final answer)

- $(4) = (3) [1000 \times (2)]$
- (5) = (1) (4)
- (6) = (4)/(5)

Total Excess Loss Factor (Totals row) = (Total 4) / (Total 5)

- (b) restated AY 2025 reported loss (non-excess losses) (1 + excess ratio) 105.0%
 - 114,747
 - 120,484
 - (final answer)

Reading: Werner 06: Loss + LAE Pricing-06: Benefit Change (Problem)

Model: 2017.Fall #6

Problem Type: Direct Impact of Benefit Change

State Avg Weekly Wage

Find Calculate the direct effect of the state's proposed worker's compensation indemnity benefit change.

1,500

Given

			total
Ratio to	SAWW	# of	weekly
min	min max		wages
0.0%	62.5%	150	108,750
62.5%	93.8%	100	110,000
93.8%	125.0%	95	137,750
125.0%	156.3%	50	87,500
156.3%	n/a	45	216,000
TO	ΓAL	440	660,000

<==== SAWW

	current	proposed
% of wages compensation rate	80%	80%
min benefit as % of SAWW	50%	75%
MAX benefit as % of SAWW	125%	100%

Step 1 calculate dollar-values of current & proposed min/MAX benefits

		<u>SAWW</u>				
min current	=	1,500	X	50%	=	750
MAX current	=	1,500	X	125%	=	1,875
min proposed	=	1,500	X	75%	=	1,125
MAX proposed	=	1,500	х	100%	=	1,500

Step 2 fill in columns (5), (6), (7) of table below

(1)	(2)	(3) (4)		(5)	(6)	(7)
			total	avg		
ratio to	SAWW	# of	weekly	weekly	current	proposed
min	max	workers	wages	wages	benefit	benefit
0.00%	62.50%	150	108,750	725	750	1,125
62.50%	93.75%	100	110,000	1,100	880	1,125
93.75%	125.00%	95	137,750	1,450	1,160	1,160
125.00%	156.25%	50	87,500	1,750	1,400	1,400
156.25%	n/a	45	216,000	4,800	1,875	1,500
TOTAL		440	660,000	1,500	465,075	528,950

(5) = (4)/(3)

(6) = $min(MAX(0.8 \times (Col 5), 750), 1875)$

(7) = min(MAX(0.8 x (Col 5), 1125), 1500)

(TOTAL 6) = SUMPRODUCT([Col 3], [Col 6]) (TOTAL 7) = SUMPRODUCT([Col 3], [Col 7])

Step 3 direct effect of change (total proprosed benefit) (total current benefit) 465,075

528,950

13.7%

(final answer)

Reading: Werner 06: Loss + LAE
Model: Pricing Components
Problem Type: Trend Selection

Find Fill in the missing values and select a frequency, severity, and pure premium trend.

The data is based on a simulation with a small degree of random variation.

Given

year		closed			annual		annual		annual
ending	earned	claim	paid		%		%	pure	%
quarter	exposure	count	loss	freq	change	severity	change	premium	change
Mar 2020	100,000	1,000	1,000,000	0.0100	-	1,000		10.00	
Jun 2020	100,396	1,012	1,017,059	0.0101		1,005		10.13	
Sep 2020	100,692	1,024	1,034,408	0.0102		1,010		10.27	
Dec 2020	101,394	1,037	1,054,158	0.0102		1,016		10.40	
Mar 2021	101,898	1,052	1,069,996	0.0103	3.25%	1,017	1.70%	10.50	5.01%
Jun 2021	102,403	1,064	1,087,160	0.0104	3.04%	1,022	1.70%	10.62	4.80%
Sep 2021	102,912	1,078	1,107,917	0.0105	3.04%	1,028	1.70%	10.77	4.80%
Dec 2021	103,629	1,089	1,126,816	0.0105	2.74%	1,035	1.80%	10.87	4.59%
Mar 2022	104,039	1,102	1,144,892	0.0106	2.63%	1,038	2.11%	11.00	4.80%
Jun 2022	104,556	1,117	1,163,258	0.0107	2.84%	1,041	1.90%	11.13	4.80%
Sep 2022	104,864	1,132	1,183,101	0.0108	3.04%	1,045	1.70%	11.28	4.80%
Dec 2022	105,596	1,145	1,200,877	0.0108	3.15%	1,049	1.40%	11.37	4.59%
Mar 2023	106,226	1,159	1,222,583	0.0109	2.94%	?	?	11.51	4.59%
Jun 2023	106,539	1,173	1,243,439	0.0110	3.04%	?	?	11.67	4.90%
Sep 2023	107,282	1,190	1,265,914	0.0111	2.74%	?	?	11.80	4.59%
Dec 2023	107,707	1,202	1,290,084	0.0112	2.94%	?	?	11.98	5.32%

Based on the simulation parameters, the true trends are as follows:

frequency: 2.94% severity: 1.90% pure prem: 4.90%

1									
year		closed			annual		annual		annual
ending	earned	claim	paid		%		%	pure	%
quarter	exposure	count	loss	freq	change	severity	change	premium	change
Mar 2020	100,000	1,000	1,000,000	0.0100		1,000		10.00	
Jun 2020	100,396	1,012	1,017,059	0.0101		1,005		10.13	
Sep 2020	100,692	1,024	1,034,408	0.0102		1,010		10.27	
Dec 2020	101,394	1,037	1,054,158	0.0102		1,016		10.40	
Mar 2021	101,898	1,052	1,069,996	0.0103	3.25%	1,017	1.70%	10.50	5.01%
Jun 2021	102,403	1,064	1,087,160	0.0104	3.04%	1,022	1.70%	10.62	4.80%
Sep 2021	102,912	1,078	1,107,917	0.0105	3.04%	1,028	1.70%	10.77	4.80%
Dec 2021	103,629	1,089	1,126,816	0.0105	2.74%	1,035	1.80%	10.87	4.59%
Mar 2022	104,039	1,102	1,144,892	0.0106	2.63%	1,038	2.11%	11.00	4.80%
Jun 2022	104,556	1,117	1,163,258	0.0107	2.84%	1,041	1.90%	11.13	4.80%
Sep 2022	104,864	1,132	1,183,101	0.0108	3.04%	1,045	1.70%	11.28	4.80%
Dec 2022	105,596	1,145	1,200,877	0.0108	3.15%	1,049	1.40%	11.37	4.59%
Mar 2023	106,226	1,159	1,222,583	0.0109	2.94%	1,055	1.60%	11.51	4.59%
Jun 2023	106,539	1,173	1,243,439	0.0110	3.04%	1,060	1.80%	11.67	4.90%
Sep 2023	107,282	1,190	1,265,914	0.0111	2.74%	1,064	1.80%	11.80	4.59%
Dec 2023	107,707	1,202	1,290,084	0.0112	2.94%	1,073	2.31%	11.98	5.32%

Pricing-06: Trend Period for Losses (Problem)

Reading: Werner 06: Loss & LAE
Model: Pricing Components
Problem Type: Trend Period for Losses

Find Calculate the following quantities:

- (a) trend selection
- (b) trend period for 1-step loss trending <u>assuming</u> historical period data is on an <u>AY</u> basis
- (c) trended AY 2020 losses
- (d) trend period for 1-step loss trending <u>assuming</u> historical period data is on an <u>PY</u> basis
- (e) trended PY 2020 losses

Given historical period:

effective date: rates in effect for policy term:

2022		
2025	10	15
18	months	
24	months	

(year, month, day)

historical period paid loss:

year	losses
2020	167,000
2021	169,173
2022	171,374
2023	173,604

* Selecting loss trends based on annual data may mask seasonality. It's generally better to use quarterly data for trend selections. Step 1 calculate year-over-year % change in losses and select a reasonable trend

year	losses	% change
2020	167,000	
2021	169,173	1.30%
2022	171,374	1.30%
2023	173,604	1.30%
selection		1.30%

<==== select average

Step 2a calculate trend period assuming historical period data is on an AY basis

AAD 1 = (mid-point of historical period) = 2022 07 01 AAD 2 = (mid-point of effective period) + 0.5 x (term) = 2027 07 15

AY trend period = AAD 2 - AAD 1

= 5.042 year(s)

Step 2b calculate trend period assuming historical period data is on an <u>PY</u> basis PY trend period is shorter than the AY trend period by 0.5 x (policy term)

PY trend period = 5.042 - 0.500 x 2.000 = 4.042 year(s)

Step 3a calculate the trend loss assuming historical data is on an AY basis

AY 2020 trended loss

= 167,000 x (1.013)^ 5.042 = 178,238 (final AY answer)

Step 3a calculate the trend loss assuming historical data is on an PY basis

PY 2020 trended loss

= 167,000 x (1.013)^ 4.042 = 175,950 (final PY answer) Pricing-06: Leveraged Effect of Limits (Problem)

Reading: Werner 06: Loss + LAE **Model:** 2019.Spring #4

Problem Type: Leveraged Effect of Limits on Severity Trend

Find (a) calculate the basic limits loss trend over a 1-year time frame

(b) calculate the excess limits loss trend over a 1-year time frame

Given

claim #	total limits loss
1	15,000
2	21,000
3	24,000
4	55,000

total limits severity trend	8.0%	
basic limit	25,000	

(a) calculate the untrended and trended <u>basic</u> limits losses

	untrended	trended
claim #	basic limits loss	basic limits loss
1	15,000	16,200
2	21,000	22,680
3	24,000	25,000
4	25,000	25,000
total	85,000	88,880

(b) calculate the untrended and trended <u>excess</u> limits losses AND trended total limits losses

	untrended	trended	trended
claim #	excess limits loss	TOTAL limits loss	excess limits loss
1	0	16,200	0
2	0	22,680	0
3	0	25,920	920
4	30,000	59,400	34,400
total	30,000	124,200	35,320

Observation

The basic limits loss trend always has the smallest <u>magnitude</u> or absolute value. The excess limits loss trend always has the greatest <u>magnitude</u> or absolute value.

and

The total limits loss trend is always in the middle

If the total limits loss trend is applied to basic limits losses then

===> if the trend is positive the trended basic limits losses will be <u>over</u>estimated.

===> if the trend is negative the trended basic limits losses will be <u>underestimated</u>.

Pricing-07: Pure Premiu Method (Problem)

Reading: Werner 07: Other Expenses **Model:** Pricing Components

Problem Type: Rate Indication - Simple Version

Find Calculate the average premium an insurer must charge to balance the Fundamental Insurance Equation.

Given

loss	188,160	
LAE	38,400	
fixed U/W expense	28,160	
exposures	640	1
variable expense provision	12%	= V
target profit percentage	5%	= QT
	•	

Step 1 calculate average loss, average LAE, average fix U/W expense BY dividing by exposures

 avg loss
 =
 294.00

 avg LAE
 =
 60.00

 avg EF
 =
 44.00

Step 2 apply the formula for average premium

```
avg P = (avg loss + avg LAE + avg fixed U/W expense) / (1 - V - QT)

= 398.00 / 0.83

= 479.5

(final answer)
```

Pricing-07: Expenses - All Variable (Problem)

Reading: Werner 07: Other Expenses

Model: 2019.Spring #6

Problem Type: All Variable Expense Method

Find Select and justify a total expense ratio assuming all expenses are variable.

	2023	2024	2025
	Expense	Expense	
	Ratio	Ratio	(\$000s)
Direct Written Premium			6,100
Direct Earned Premium			5,920
Commission & Brokerage Incurred	12.0%	13.0%	945
Other Acquisition Expense Incurred	12.8%	12.7%	760
General Expenses	15.0%	5.5%	325
Taxes, Licenses, & Fees Incurred	2.1%	2.2%	130

Step 1 calculate the U/W expense ratios by category for 2025 (use earned premium for general expenses, use written premium for other categories)

									CY 2025
СВ	945	/	DWP	=	945	/	6,100	=	15.5%
OthAcq	760	/	DWP	=	760	/	6,100	=	12.5%
Gen	325	/	DEP	=	325	/	5,920	=	5.5%
TLF	130	/	DWP	=	130	/	6,100	=	2.1%

Step 2 review expense ratio for all years and make a reasonable selection

	2023	2024	2025	selection		
СВ	12.0%	13.0%	15.5%	14.2%	<====	use latest 2 years due upward trend
OthAcq	12.8%	12.7%	12.5%	12.7%	<====	use average because ratios are stable
Gen	15.0%	5.5%	5.5%	5.5%	<====	use latest 2 years only due to sudden decrease
TLF	2.1%	2.2%	2.1%	2.1%	<====	use average because ratios are stable
				34.5%		
	•			(final answe	r)	

Pricing-07: Expenses - Premium-Based (Problem)

Reading: Werner 07: Other Expenses

Model: 2017.Fall #7

Problem Type: Premium-Based Expense Projection Method

Find Calculate the underwriting expense ratio using the premium-based projection method.

	(\$000s)	% fixed
Written Premium	44,400	
Earned Premium	51,060	
Agency Commission	5,280	0%
Other Acquisition Cost	4,000	70%
Premium Tax & Licensing Fees	1,240	30%
General Expense	4,400	75%
LAE	1,200	0%

notation
WP
EP
СВ
OthAcq
TLF
Gen
LAE

Step 1 separate each expense category into its fixed and variable components

		% total				fixed		variable	= (% total) - (% fixe
		before				expense		expense	
		split		% fixed		ratio		ratio	
CB / WP	====>	11.9%	х	0%	====>	0.0%	====>	11.9%	_
OthAcq / WP	====>	9.0%	х	70%	====>	6.3%	====>	2.7%	
TLF / WP	====>	2.8%	х	30%	====>	0.8%	====>	2.0%	
Gen / EP	====>	8.6%	х	75%	====>	6.5%	====>	2.2%	
						13.6%		18.7%	_

Step 2 sum the fixed and variable component to get the total underwriting expense ratio

Note that in a ratemaking analysis, you often need the %fixed and %variable components separately.

Reading: Werner 07: Other Expenses Pricing-07: Expenses - Exposure-Based (Problem)

Model:2017.Fall #7 (modified for exposure-based method)Problem Type:Exposure-Based Expense Projection Method

Find Calculate the underwriting expense ratio using the exposure-based projection method.

	(\$000s)	% fixed
Written Premium	20,100	
Earned Premium	21,510	
Agency Commission	2,130	0%
Other Acquisition Cost	2,270	85%
Premium Tax & Licensing Fees	460	20%
General Expense	1,450	65%
LAE	1,200	0%

	notation
<==	WP
<==	EP
<==	СВ
<==	OthAcq
<==	TLF
<==	Gen
<==	LAE

	(000s)
Written Exposure	62.500
Earned Exposure	60.000

Step 1 separate each expense category into its fixed and variable components

					\$ fixed			\$ variable	
					divided by			divided by	
		% fixed		\$ fixed	exposure		\$ variable	premium	
СВ	х	0%	====>	0	0.00	====>	2,130	10.6%	(use written prem. or expos.)
OthAcq	х	85%	====>	1,930	30.87	====>	341	1.7%	(use written prem. or expos.)
TLF	х	20%	====>	92	1.47	====>	368	1.8%	(use written prem. or expos.)
Gen	х	65%	====>	943	15.71	====>	508	2.4%	(use <u>earned</u> prem. or expos.)
				•	48.05			16.5%	

CB, OthAcq, TLF are divded by <u>written</u> exposure for fixed expenses and by <u>written</u> premium for variable expenses General Expenses is divided by <u>earned</u> exposure for fixed expenses and by <u>earned</u> premium for variable expenses

Note: you cannot sum the fixed and variable expenses because they are in different units

average fixed expense per exposure: 48.05 (final answer) average variable expense per dollars of premium: 16.5% (final answer)

Pricing-08: Loss Ratio Method (Problem)

Reading: Werner 08: Indication
Model: Pricing Components

Problem Type: Rate Indication - Simple Version

Find Calculate the indicated average rate level change.

experience period on-level trended EP	441,000
experience period trended & developed Loss & LAE	339,570
experience period fixed expenses	13,671
variable expense provision	20%
target profit percentage	4%

Step 1 calculate the loss ratio L & F (Loss & LAE ratio, Fixed expense ratio)

```
L&LAE ratio = 339,570 / 441,000 = 77.0%

F = 13,671 / 441,000 = 3.1%

80.1%
```

Step 2 apply the formula for the indicated rate change

```
rate change = (L&LAE Ratio + F) / (1 - V - QT) - 1.0
= 80.1% / 0.76 - 1.0
= 5.4%
(final answer)
```

Werner 09: Risk Classification Pricing-09: Relativities - Pure Premium Method (Problem)
Univariable Methods for Rating Variable Differentials Reading:

3

Model:

Problem Type: Pure Premium Method - Easy Version

Find Propose rating factors for the given rating variable relative to the base class:

level		
of		reported
variable	EE	L + ALAE
1	187	110,330
2	363	239,580
3	206	150,380

Step 1 complete columns (4), (5), (6) in the following table

(1)	(2)	(3)	(4)	(5)	(6)	_
level					rebased	
of		reported	pure	indicated	indicated	
variable	EE	L + ALAE	premium	relativity	relativity	
Α	187	110,330	590	0.892	0.808	
В	363	239,580	660	0.997	0.904	
С	206	150,380	730	1.103	1.000	<== base level
Total	756	500,290	662	1.000	0.907	•

(final answers in green)

- (4) = (3)/(2)
- (5) = (4) / (Tot4)
- (6) = (5) / (Base5)

where Base5 = 1.103

Reading: Werner 09: Risk Classification Pricing-09: Relativities - with Credibility (Problem)

Model: Univariabe Methods for Rating Variable Differentials

Problem Type: Pure Premium Method - With Credibility & Off-Balance

Find Calculate the indicated rate change for each class that results in a revenue-neutral overall change.

Given

level			
of		reported	current
variable	EE	L + ALAE	relativity
1	10,500	512,000	1.000
2	5,200	740,000	1.500
3	13,100	632,000	1.300

* EE = Earned Exposures

Full credibility: 13,260 exposures

Use the square-root rule for credibility. Complement of credibility is no change.

Step 1 complete the following table and note the key columns:

(Col 5) = indicated relativity

(Col 8) = current relativity (normalized so that the exposure-weighted average equals 1.000)

(Col 9) = weighted average of (Col 5) and (Col 8) using (Col 6) as the weight for (Col 5)

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
level							normalized	cred-wtd
of		reported	pure	indicated	credibility	current	current	indicated
variable	EE	L + ALAE	premium	relativity	(weights)	relativity	relativity	relativity
Α	10,500	512,000	49	0.745	0.890	1.00	0.815	0.753
В	5,200	740,000	142	2.175	0.626	1.50	1.223	1.819
С	13,100	632,000	48	0.737	0.994	1.30	1.060	0.739
Total	28,800	1,884,000	65.417	1.000	-	1.227	1.000	0.939

- (4) = (3) / (2)
- (5) = (4) / (Tot4)
- (6) = sqrt[(2) / 13260] (maximum value is 1.0)
- (7) given information

(Tot7) = exposure-weighted average of (7)

- (8) = (7) / (Tot7)
- (9) $= [(6) \times (5) + (1.0 - (6)) \times (8)]$

(Tot 9) = exposure-weighted average of (9)

Step 2 calculate the % change in relativity <u>from</u> current <u>to</u> credibility-weighted indicated, but note:

- you must first normalize the cred-wtd indicated relativity as shown in (Col 10)
- you must then "off-balance" the change in (Col 11) so that the total change is 0.0% in (Col 12)

(1)	(10)	(11)	(12)
level	normalized		change
of	cred-wtd		with
variable	ind. rel.	change	off-bal.
Α	0.802	-19.8%	-1.7%
В	1.937	29.1%	58.4%
С	0.787	-39.5%	-25.7%
Total	1.000	-18.5%	0.0%

* This way of calculating column (12) seems simpler than the method given in the examiner's report.

(final answers in green)

- (10) = (9) / (Tot9)
- (11) = (10) / (7) 1.0
- (12) = (1.0 + (11)) / (1.0 + (Tot11)) 1.0

verner U9: Risk Classification Pricing-09: Relativities - Loss Ratio Method (Problem)
Univariable Methods for Rating Variable Differentials
Loss Ratio Methods For Reading:

Model:

Problem Type: Loss Ratio Method - Easy Version

Find Propose rating factors for the given rating variable relative to the base class: 2

ı	level			
	of		reported	current
L	variable	EP @ CRL	L + ALAE	relativity
Ī	1	13,500	8,910	1.230
	2	11,200	11,648	1.000
L	3	19,200	21,120	0.740

Step 1 complete columns (4), (5), (6) in the following table

_	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	_
	level				change in		= (6) x (5)	rebased	
	of		reported	loss	indicated	current	indicated	indicated	
	variable	EP @ CRL	L + ALAE	ratio	relativity	relativity	relativity	relativity	
	Α	13,500	8,910	66.0%	0.695	1.230	0.855	0.781	
	В	11,200	11,648	104.0%	1.095	1.000	1.095	1.000	<==
	С	19,200	21,120	110.0%	1.159	0.740	0.857	0.783	
	Total	43,900	41,678	94.9%	1.000	-			

(final answers in green)

- (4) = (3)/(2)
- (5) = (4) / (Tot4)
- (6) = given
- (7) = (6) \times (5)
- (8) = (7) / (Base7)

where Base7 = 1.095

Werner 09: Risk Classification Pricing-09: Relativities - Exposure-Based (Problem)

Model: Univariate Methods for Rating Variable Differentials

Problem Type: Pure Premium Method - Adjusted

Find Propose rating factors for rating variable 2, adjusting for distributional bias.

Given Exposure Distribution

Reading:

		variable 2	
variable 1	2A	2B	2C
1A	183	108	10
1B	94	96	99
1C	24	105	139

variable 1 has rating levels: 1A, 1B, 1C variable 2 has rating levels: 2A, 2B, 2C

Loss Distribution

		variable 2	
variable 1	2A	2B	2C
1A	65,148	46,872	5,050
1B	44,180	50,592	53,460
1C	12,120	56,910	87,570

Current Relativities for Rating Variable 1

variable 1	relativity
1A	1.00
1B	0.61
1C	1.52

base level for variable 2 is

2A

Step 1 calculate variable 2 relativites as a weighted average of variable 1 relativities

==> you can do these calculations all in 1 table - I broke it up to (hopefully?) make it easier to see what's going on

(2A exposures)

		(ZA exposu	Ιŧ
var 1	var 1 rels	weights	
1A	1.0000	183	
1B	0.6100	94	
1C	1.5200	24	
total	0.9197	301	
	(wtd avg)		

(2B exposures)

		(zb exposu	res
var 1	var 1 rels	weights	
1A	1.0000	108	
1B	0.6100	96	
1C	1.5200	105	
total	1.0555	309	
	(wtd avg)		-

(2C exposures)

var 1	var 1 rels	weights
1A	1.0000	10
1B	0.6100	99
1C	1.5200	139
total	1.1358	248
(wtd avg)		

Step 2 use step 1 to calculate <u>adjusted exposures</u> for rating variable 2

total adjusted exposures = (wtd avg relativity) x (total unadjusted exposures)

level total total of wtd avg unadj. adjusted var 2 relativity expos. expos. 2A 0.9197 301 276.82 = 0.9197 x 301 2B 1.0555 309 326.16 = 1.0555 x 309 2C 1.1358 248 281.67 = 1.1358 x 248

Step 3 now just apply the "regular" pure premium method but use the adjusted exposures

(1)	(2)	(3)	(4)	(5)	(6)	
level					rebased	
of	adjusted	reported	pure	indicated	indicated	
var 2	expos.	L + ALAE	premium	relativity	relativity	
2A	276.82	121,448	438.7	0.9199	1.0000	<== base level
2B	326.16	154,374	473.3	0.9924	1.0788	
2C	281.67	146,080	518.6	1.0875	1.1821	
Total	884.65	421,902	476.9	1.0000	1.087	

(final answers in green)

- (4) = (3)/(2)
- (5) = (4) / (Tot4)
- (6) = (5) / (Base5)

where Base5 = 0.920

Werner 09: Risk Classification Pricing-09: Relativities - Detecting Distortion (Problem) Univariate Methods for Rating Variable Differentials Reading:

Model: Problem Type: Pure Premium Method - Detecting Distortion

Find If relativities for rating variable 2 are calculated using the pure premium method, which data set

is likely to produce indicated relativities with less distortion due to distributional bias?

Given Exposure Distribution: Data Set 1

		variable 2				
variable 1	2A	2B	2C			
1A	72	77	97			
1B	104	29	40			
1C	189	13	35			

Exposure Distribution: Data Set 2

	variable 2				
variable 1	2A	2B	2C		
1A	114	123	144		
1B	46	46	63		
1C	48	53	52		

Step 1 calculate the percentage of the total exposures for each cell in both data sets

Exposure Distribution: Data Set 1

Exposure Distribution: Data Set 1							
	variable 2						
variable 1	2A	2B	2C				
1A	11%	12%	15%				
1B	16%	4%	6%				
1C	29%	2%	5%				

There is less bias in data set 1

Exposure Distribution: Data Set 2

	variable 2				
variable 1	2A	2B	2C		
1A	17%	18%	21%		
1B	7%	7%	9%		
1C	7%	8%	8%		

Pricing-11: ILFs - Uncensored Data (Problem)

Reading: Werner 11: Special Classification

Model: Text Example

Problem Type: Increase Limits Factor - Uncensored Data

Find Calculate the increased limits factors for 100

Given Basic policy limit: 10

loss r	ange		
lower	lower upper limit limit		reported
limit			loss
0	10	110	600
10	25	70	1,600
25	50	60	1,520
50	100	20	1,300
100	300	13	2,170

Step 1 cap the reported losses at the basic limit and at the increased limit

- 1			
	capped	capped	
	at	at	
	10	100	
	600	600	
	700	1,600	
	600	1,520	
	200	1,300	
	130	1,300	
	2,230	6,320	<== total
			•

Step 2 calculate the Limited Average Severity for both limits

```
LAS(10)
                     (losses capped at 10)
                                                                (total counts)
                     2,230
                                                                 273
                     8.17
LAS(100)
                     (losses capped at 100)
                                                                 (total counts)
                     6,320
                                                                       273
                     23.15
```

Step 3 calculate the Increased Limits Factor for the higher limit

```
ILF(100)
                    LAS(100)
                                                  LAS(10)
                    23.15
                                                  8.17
                    2.834
```

Werner 11: Special Classification Pricing-11: ILFs - Censored Data (Problem)

Reading: Werner 11: Special Model: 2019.Fall #13

Problem Type: Increase Limits Factor - Censored Data

Find Calculate the increased limits factors for 100 and 200

Given Basic policy limit: 50

loss ra	oss range policy limit:		policy limit:		policy limit:		
lower	upper	50		100		200	
limit	limit	# clms	losses	# clms	losses	# clms	losses
0	50	145	7,250	220	11,000	0	0
50	100			330	33,000	525	52,500
100	200					350	70,000
Total		145	7,250	550	44,000	875	122,500

100

Step 1 calculate the conditional Limited Average Severity for each layer

(1)	(2)	(3)	(4)	(5)	(6)	_
losses	size		total	relevant		
in layer	of	excess	losses	counts	LAS	
(capped)	layer	counts	in layer	for layer	for layer	
18,250	50	1,205	78,500	1,570	50	<== LAS(50)
42,750	50	350	60,250	1,205	50	<== LAS(50, 100)
35,000	100	0	35,000	350	100	<== LAS(100, 200)

- (1), (3), (5) = see below
- (2) = (upper limit of layer) - (lower limit of layer)
- (use raw data table)
- (4) = (1) + (2)*(3)
- (6) = (4) / (5)
- (1) 18,250 7,250 11,000 0 33,000 52,500 (330 + 525) * 50(1) 42,750 70,000 350 * 100 35,000 (1)
- (3) 1,205 330 + 525 + 350
- 350 (3)
- there are no excess counts to consider for the highest layer 0 (3)
- (5) 1,570 145 + 550 + 875(5) 1,205 = 330 + 525 + 350
- (5) 350 350

calculate probabilities of a claim X exceeding: 50 and

Note: To calculate Pr(X > 50), we use only policies that could potentially have a claim of at least 50. We cannot use data for policies with limits less than 50.

Note: To calculate Pr(X > 100), we use only policies that could potentially have a claim of at least 100. We cannot use data for policies with limits less than 100.

Step 3a calculate the Limited Average Severity for each limit using the above information for layers

	LAS(50)	=	50	(directly from	Step 1)			
	LAS(100)	=	LAS(50)	+	P(X > 50)	Х	LAS(50, 100)	
		=	50	+	0.846	X	50	
		=	92					
	LAS(200)	=	LAS(100)	+	P(X > 100)	Х	LAS(100, 200)	
		=	92	+	0.400		100	
		=	132					
Step 3b	calculate the ILFs fo	or	100	and	200			
	ILF (100)	=	LAS(100)	/	LAS(50)	=	1.846	<== final answer
	ILF (200)	=	LAS(200)	/	LAS(50)	=	2.646	<== final answer

Reading: Werner 11: Special Classification Pricing-11: Deductible Relativities - Ground-up Losses (Problem)

Model: Text Example

Problem Type: Deductible Relativities - Ground-up Losses

Find Calculate the loss elimination ratio and deductible relativity for the indicated deductible.

Given deductible 500

size o	of loss		ground-up	
lower upper		reported	reported	
limit	limit	counts	loss	
0	100	150	6,470	
100	250	50	8,310	
250	500	40	13,480	
500	1,000	30	24,210	
1,000 10,000		8	48,740	
to	tal	278	101,210	

Pricing-11: Deductible Relativities - Ground-up Losses (Solution)

Step 1 add a column to the data table showing losses eliminated by the deductible

_					
Ī	size o	of loss		ground-up	loss
	lower upper		reported	reported	elimin.
	limit	limit	counts	loss	by deduc.
Ī	0	100	150	6,470	6,470
	100	250	50	8,310	8,310
	250	500	40	13,480	13,480
	500	1,000	30	24,210	15,000
	1,000	99,999	8	48,740	4,000
Γ	total		278	101 210	47 260

```
deductible: 500
```

```
if (upper limit) <= deductible then loss eliminated is:
if (upper limit) > deductible then loss eliminated is:
```

full ground-up reported losses deductible x (reported counts)

Step 2a calculate the Loss Elimination Ratio

```
LER(500) = (total loss eliminated by deductible) / (total ground-up reported losses)
= 47,260 / 101,210
= 0.467
```

Step 2b calculate the deductible relativity

```
relativity = 1 - LER(500)
= 1 - 0.467
= 0.533
```

Werner 11: Special Classification Pricing-11: Deductible Relativities - Net Losses (Problem)

Model: Text Example

Reading:

Problem Type: Deductible Relativities - Net Losses

Find Calculate the loss elimination ratio and deductible relativity from deductible D1 to D2.

 Given
 deductible D1
 250

 deductible D2
 500

	net loss	net loss
	for	for
D	D = 250	D = 500
0	588,134	524,924
100	1,176,269	1,049,848
250	2,940,672	2,624,621
500		5,249,242
1,000		
total	4,705,075	9,448,635

Step 1 calculate the loss eliminated in moving from D1 to D2

	net loss	net loss	
	for	for	loss
D	D = 250	D = 500	elim.
0	588,134	524,924	63,210
100	1,176,269	1,049,848	126,421
250	2,940,672	2,624,621	316,051
500		5,249,242	
1,000			-
total	4,705,075	9,448,635	505,682

Step 2 calculate LER (Loss Elimination Ratio)

LER(250 to 500) = (loss eliminated) / (total net loss for D = 250) = 505,682 / 4,705,075

Pricing-11: WC - Premium Discount (Problem) Reading: Werner 11: Special Classification

Model: Text Example

WC - Premium Discount **Problem Type:**

Find Calculate the following quantities for the given standard premium:

dollar amount of premium discount

(b) percentage discount

(c) final discounted premium

520,000 Given standard premium

Ī	premiur	premium range		general	taxes	profit
Ī	0	5,000	14.0%	13.0%	2.0%	6.0%
	5,000	100,000	11.0%	11.0%	2.0%	6.0%
	100,000	500,000	8.0%	8.0%	2.0%	6.0%
	500,000	2,000,000	4.0%	5.0%	2.0%	6.0%

Step 1 add columns to the given data table as follows:

		(3)					(8)	(9)	(10)	(11)
(1)	(2)	premium	(4)	(5)	(6)	(7)	total	expense		
premiun	n range	in range	production	general	taxes	profit	expenses	reduction	% discnt	\$ discnt
0	5,000	5,000	14.0%	13.0%	2.0%	6.0%	35.0%	0.0%	0.00%	0
5,000	100,000	95,000	11.0%	11.0%	2.0%	6.0%	30.0%	5.0%	5.43%	5,163
100,000	500,000	400,000	8.0%	8.0%	2.0%	6.0%	24.0%	11.0%	11.96%	47,826
500,000	2,000,000	20,000	4.0%	5.0%	2.0%	6.0%	17.0%	18.0%	19.57%	3,913

- (3) = min[(2)-(1), standard premium sumPrior(3)]
- (8) = (4) + (5) + (6) + (7)
- (9) = [(8 row1) (8)]
- (10) = (9) / [1.0 (6)-(7)]
- $(11) = (3) \times (10)$

Step 2 calculate the required amounts

- (a) dolar amount of premium discount = (Tot 11) = 56,902
- (b) percentage discount
 - = (a) / (standard premium)
 - = 56,902 / 520,000
 - = 10.94%
- (c) final discounted premium
 - = (standard premium) (a)
 - = 520,000 56,902
 - = 463,098

Reading: Werner 11: Special Classification Pricing-11: WC - Loss Constant (Problem)

Model: Text Example
Problem Type: WC - Loss Constant

Find Calculate the loss constant to be added to the "per-risk" premium for each range

to meet the target loss ratios

l	premium range		# risks	premium	rptd loss	initial LR	target LR
I	0	4,000	150	50,000	37,000	74.0%	66.0%
l	4,001		100	550,000	368,500	67.0%	66.0%

Step 1 calculate the premium shortfall and the corresponding loss constant

							(8)	(9)	_
(1)	(2)	(3)	(4)	(5)	(6)	(7)	premium	loss	
premium	range	# risks	premium	rptd loss	initial LR	target LR	shortfall	constant	
0	4,000	150	50,000	37,000	74.0%	66.0%	6,060.6	40.40	<== final answer
4,001		100	550,000	368,500	67.0%	66.0%	8,333.3	83.33	<== final answer

(8) = [(5)/(7)]-(4)

(9) = (8)/(3)

Check the r	result:			(10)	(11)	(12)
				new	new	
	premiui	m range	target LR	premium	LR	difference
0		4,000	66.0%	56,061	66.0%	0.0%
	4,001		66.0%	558,333	66.0%	0.0%

<== difference should be 0.0% <== difference should be 0.0%

(10) = [(3)x(9)] + (4)

(11) = (5) / (10)

(12) = (11) - (7)

Pricing-11: ITV - Rate per \$1,000 (Problem)

Reading: Werner 11: Special Classification
Model: Text Example (Simplified)

Problem Type: ITV - Premium Rate per \$1,000 of Coverage

Find Calculate the rate per \$1,000 of coverage.

Given

value of home	250,000
AOI	152,500
frequency of loss	1.0%

The severity of loss is uniformly distributed between 0 and the value of the home.

Step 1 calculate the average expected payment subject to the maximum payment of AOI

	loss	average	average
loss	dist.	loss	payment
152,500	61%	76,250	76,250
250,000	39%	201,250	152,500
	152,500	loss dist. 152,500 61%	loss dist. loss 152,500 61% 76,250

<== weighted by loss distribution

Step 2 calculate the pure premium and the premium rate per \$1,000

Note If the home is insured to <u>full value</u>, the rate per \$1,000 of coverage would be:

5.00

Pricing-11: ITV - Co-insurance (Problem)

Reading: Werner 11: Special Classification
Model: Text Example (Simplified)

Problem Type: ITV - Coinsurance

Find Calculate the following:

(a) indemnity payment(b) coinsurance penalty

(c) maximum coinsurance penalty

V: Value of property	200,000
F: Face value of property (AOI)	150,000
c: conisurance percentage	80%
L: Loss (after deductible)	100,000

```
Step 1 calculate the apportionment ratio "a"
                                                     a = min(F/(cV), 1.0)
                                   min(
                                                                    \mathsf{cV}
                                                                                         1.0)
                                   min(
                                             150,000
                                                                   160,000
                                                                                         1.0)
                                   min(
                                             0.938
                                                                                         1.0)
                                  0.938
Step 2a calculate the indemnity payment "I"
                                                     I = min(F, L*a)
                                               F
                                   min(
                                                                    Lxa )
                                                                    93,750)
                                   min(
                                             150,000
                                   93,750 <== final answer (a)
Step 2b calculate the coininsurance penalty "e"
                                                     e = min(F, L) - I
                                               F
                                                                     L
                                   min(
                                   min(
                                             150,000
                                                                   100,000
                                                                                                     93,750
                                  6,250
                                           <== final answer (b)
Step 2c calculate the MAXIMUM coininsurance penalty e(MAX)
                                                                           eMAX = F \times (1-a)
                                    F
            e(MAX)
                                                        (1 - a)
                                 150,000
                                                        0.063
                                  9,375
                                           <== final answer (c)
```

Pricing-12: C of C - Harwayne's Method (Problem)

Reading: Werner 12: Credibility

Model: Text Example
Problem Type: Harwayne's Method

Find Calculate the complement of credibility using Harwayne's method for:

state:	Α	and	state:	С
class:	1		class:	2

Given

state	class	expos	loss	PP
Α	1	250	1,750	7.0
	2	500	3,250	6.5
	3	450	2,475	5.5
	total	1,200	7,475	6.229
В	1	60	360	6.0
	2	360	1,980	5.5
	3	60	570	9.5
	total	480	2,910	6.063
С	1	720	5,400	7.5
	2	270	3,375	12.5
	3	720	8,280	11.5
	total	1,710	17,055	9.974
D	1	270	675	2.5
	2	60	150	2.5
	3	150	450	3.0
	total	480	1,275	2.656

* PP = Pure Premium

state:	Α
class:	1

Use Harwayne's method to find a complement of credibility for state A & class 1.

Step 1 calculate adjusted total PP for states B, C, D, using exposures from state A as weights

state A total expos.

state C

total

PP for state A:	6.229	<====	given		
adjusted PP for state B =	7.104	=	$(250 \times 6 + 500 \times 5.5 + 450 \times 9.5)$	/	1,200
adjusted PP for state C =	11.083	=	(250 x 7.5 + 500 x 12.5 + 450 x 11.5)	/	1,200
adjusted PP for state D =	2.688	=	$(250 \times 2.5 + 500 \times 2.5 + 450 \times 3)$	/	1,200

Step 2 calculate adjusted class 1 PP for states B, C, D, using the ratios of (state A PP) to (adjusted PP of each of states B, C, D)

class 1 PP

```
adjusted class 1 PP for state A
                                                                 not required because this is the base class
                                                         <====
adjusted class 1 PP for state B
                                   =
                                               5.261
                                                           =
                                                                      6.0
                                                                                  х
                                                                                         6.229 / 7.104
adjusted class 1 PP for state C
                                               4.215
                                                           =
                                                                      7.5
                                                                                         6.229 / 11.083
adjusted class 1 PP for state D
                                               5.795
                                                                      2.5
                                                                                         6.229 / 2.688
```

Step 3 calculate a new class 1 PP for the complement as a weighted average of Step 2 results using class 1 exposures as weights

```
new class 1 PP for complement = 4.681 = (60 \times 5.261 + 720 \times 4.215 + 270 \times 5.795) / (60 + 720 + 270) (for state A) (final answer)
```

state: C class: 2

Now we'll repeat Harwayne's method but for state C & class 2.

Step 1 calculate adjusted total PP for states A, B, D, using exposures from state A as weights

expos. PP for state A: 6.289 $(720 \times 7 + 270 \times 6.5 + 720 \times 5.5)$ 1,710 adjusted PP for state B = 7.395 $(720 \times 6 + 270 \times 5.5 + 720 \times 9.5)$ 1,710 adjusted PP for state C = 9.974 given adjusted PP for state D = 1,710 2.711 $(720 \times 2.5 + 270 \times 2.5 + 720 \times 3)$

Step 2 calculate adjusted class 2 PP for states A, B, D, using the ratios of (state C PP) to (adjusted PP of each of states A, B, D)

```
class 2 PP
adjusted class 2 PP for state A
                                              10.308
                                                                                         9.974 / 6.289
                                   =
                                                           =
adjusted class 2 PP for state B
                                   =
                                               7.418
                                                           =
                                                                      5.5
                                                                                         9.974 / 7.395
                                                                                  Х
adjusted class 2 PP for state C
                                                                  not required because this is the base class
                                   =
                                                         <====
adjusted class 2 PP for state D
                                                                                         9.974 / 2.711
                                               9.199
                                                           =
                                                                      2.5
```

Step 3 calculate a new class 2 PP for the complement as a weighted average of Step 2 results using class 2 exposures as weights

```
new class 2 PP for complement = 9.105 = (500 \times 10.308 + 360 \times 7.418 + 60 \times 9.199) / (500 + 360 + 60) (final answer)
```

Pricing-12: C of C - Increased Limits Analysis (Problem)

Reading: Werner 12: Credibility
Model: Text Example

Problem Type: Increased Limits Analysis - Complements for Excess Ratemating

Find Find the complement of credibility in indicated layer using Increased Limits Analysis.

Given layer: 500,000 to 750,000

losses on policies capped at: 500,000 is 2,000,000

increased limits factors:

limit	ILF
100,000	1.00
250,000	1.75
500,000	2.50
750,000	3.00
1,000,000	3.40

Step 1 just apply the formula to find the complement of credibility C

```
500,000 <==== Attachment point
        A + L
                                                   Attachment point + Limit of insurer's liability
        ILF(A)
                                 2.50
                                                   lookup on ILF table
        ILF(A+L)
                                 3.00
                                                   lookup on ILF table
now just apply the formula
            С
                                                      ILF(A)
                                                                                     ILF(A+L)
                                                                                                           ILF(A)
                                 cap
                                                                             (
                               2,000,000
                                                       2.50
                                                                             (
                                                                                       3.00
                                                                                                            2.50
                               400,000
```

Pricing-12: C of C - Lower Limits Analysis (Problem)

Reading: Werner 12: Credibility Text Example

Model:

Problem Type: Lower Limits Analysis - Complements for Excess Ratemating

Find Find the complement of credibility in indicated layer using $\underline{\text{Lower}}$ Limits Analysis.

500,000 750,000 Given layer:

> 250,000 losses on policies capped at: is 1,500,000

increased limits factors:

limit	ILF
100,000	1.00
250,000	1.75
500,000	2.50
750,000	3.00
1,000,000	3.40

Step 1 just apply the formula to find the complement of credibility C

```
d
                                250,000 <==== lower limit
                                500,000
                                          <====
                                                  Attachment point
        A + L
                                750,000
                                                  Attachment point + Limit of insurer's liability
        ILF(d)
                                1.75
                                                   lookup on ILF table
        ILF(A)
                                                  lookup on ILF table
                                2.50
                                          <====
        ILF(A+L)
                                                  lookup on ILF table
                                3.00
now just apply the formula
            С
                                                     ILF(d)
                                                                            (
                                                                                   ILF(A+L)
                                                                                                          ILF(A)
                                cap
                                                                                                                      )
                              1,500,000
                                                      1.75
                                                                                     3.00
                                                                                                          2.50
                             428,571
```

Pricing-12: C of C - Limits Analysis (Problem)

Reading: Werner 12: Credibility

Model: Text Example

Problem Type: Limits Analysis - Complements for Excess Ratemating

Find Find the complement of credibility in indicated layer using **Limits Analysis**.

Given layer: 500,000

estimated all limits LR: 60%

increased limits factors:

limit (d)	premium	ILF
100,000	1,000,000	1.00
250,000	500,000	1.75
500,000	200,000	2.50
750,000	200,000	3.00
1,000,000	75,000	3.40

750,000

Step 1 let's get everything organized so that step 2 is easy

```
d
                       cycles over all values greater than or equal to A
Α
                =
                           500,000
                                       <====
                                                 Attachment point
A + L
                           750,000
                                                 Attachment point + Limit of insurer's liability
                =
                                       <====
ILF(d)
                =
                       depends on which row we're on in the table
ILF(A)
                =
                           2.50
                                       <====
                                                 lookup on ILF table
ILF(A+L)
                           3.00
                                                 lookup on ILF table
```

Step 2 set up the table to do the calculations

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
			expected					expected
			total	ILF for			% loss	loss
d	A + L	min(d,A+L)	losses	min(d,A+L)	ILF(A)	ILF(d)	in layer	in layer
100,000	750,000	100,000	600,000	1.00	2.50	1.00	0.00%	0
250,000	750,000	250,000	300,000	1.75	2.50	1.75	0.00%	0
500,000	750,000	500,000	120,000	2.50	2.50	2.50	0.00%	0
750,000	750,000	750,000	120,000	3.00	2.50	3.00	16.67%	20,000
1,000,000	750,000	750,000	45,000	3.00	2.50	3.40	14.71%	6,618
							_	26.618

(4) = (premium for each limit d) x (estimated all limits LR)

(final answer)

(8) = MAX [0, [(5)-(6)]/(7)]

(9) $= (4) \times (8)$

Note: You can probably do this calculation with fewer columns in the table. Alice wrote out all the intermediate steps because it's just too easy to mess this up.

Slowly and correctly beats rapidly and stupidly. :-)

Pricing-13: Lifetime Value Analysis (Problem)

Reading: Werner 13: Other Considerations

Model: 2013.Spring #10
Problem Type: Lifetime Value Analysis

Find Calculate the lifetime value of the expected profit as a percentage of premium

Given

premium: year 1	1,000
premium: year 2	1,000
premium: year 3	1,000
new business expected LR	60%
annual decrease in losses	25
expenses - new business	420
expenses - renewal business	350
prob(1st renewal)	85%
prob(2nd renewal)	90%
prob(3rd renewal)	0%
annual discount rate	3%

Step 1 complete the following table

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
					cumulative	discount	PV	PV
year	premium	loss	expense	persistency	persistency	factor	profit	premium
1	1,000	600	420	100.0%	100.0%	1.0000	-20.00	1,000.00
2	1,000	575	350	85.0%	85.0%	0.9709	61.89	825.24
3	1,000	550	350	90.0%	76.5%	0.9426	72.11	721.09
totals ====>						als ===>	114.00	2,546.33

- (1) = given
- (2) = start at (premium: year 1) x 60% then decrease by 25 per year
- (3) = use 'new business' expenses for year 1, then 'renewal expenses' for years 2 & 3
- (4) = giver
- (5) = product of current & prior values of (Col 4)
- (6) = 1 / (1 + discount rate) ^ (year -1)
- (7) = $[(1) (2) (3)] \times (5) \times (6)$
- (8) = $(1) \times (5) \times (6)$

Step 2 calculate the % profit

```
% profit = total PV(profit) / total PV(premium)
= 114.00 / 2,546.33
= 4.48% <==== final answer
```

Pricing-14: Additive Expense Fee (Problem)

Reading: Werner 14: Implementation

Model: Text Example Problem Type: Additive Expense Fee

Find Calculate the following:

fixed expense ratio (a) (b) fixed additive expense fee

Given countrywide premium (\$000s)

9,000 profit provision 6% average loss cost 220

expense	countrywide	
category	expenses (\$000s)	%-fixed
commissions	1,400	0%
general expenses	1,200	45%
other acquisition	500	100%
taxes	200	0%
licenses & fees	50	100%
TOTAL	3,350	

Step 1 calculate \$-fixed based on %-fixed

	\$-total		%-fixed		\$-fixed
commissions	1,400	х	0%	=	0
general expenses	1,200	x	45%	=	540
other acquisition	500	x	100%	=	500
taxes	200	x	0%	=	0
licenses & fees	50	x	100%	=	50
	3,350				1,090

Step 2a calculate the fixed expense ratio F

```
F = $-fixed / CW prem
= 1,090 / 9,000
= 12.1% <== final answer (a)
```

Step 2b calculate other ratios we'll need in Step 3

$$V + F = $-total / CW prem = 3,350 / 9,000 = 37.2\%$$
 $V + F + Q = 37.2\% + 6.0\% = 43.2\%$ $V + Q = V + F + Q - F = 43.2\% - 12.1\% = 31.1\%$

Step 3a calculate P(p) [projected avg prem] and E(F)(p) [projected fixed expense] as intermediate steps

$$\vec{P}(p)$$
 = loss cost / (1-V-F-Q) = 220 / 56.8% = 387.48
 $\vec{E}(F)(p)$ = $\vec{P}(p)$ x F = 387.48 x 12.1% = 46.93

Step 3b put everything together to get the final projected fixed additive expense fee A(p)

A(p) =
$$E(F)(p)$$
 / $(1-V-Q)$
= 46.93 / 68.9%
= 68.12 <== final answer (b)

Note 1: The quantity (1-V-Q) is called the Variable Permissible Loss Ratio or VPLR.

Note 2: I used a "p" in parentheses (p) to indicate "projected" quantities. Strictly speaking, the "p" should be a subscript but it was too small to be legible in this spreadsheet.

werner 14: Implementation Pricing-14: Extension of Exposures Method (Problem) 2015.Fall #11 (without minimum premium requirement) Reading:

Model:

Problem Type: Base Rate - Extension of Exposures Method

Find Calculate the base rate required to achieve an average rate increase of 15%

1,250 Given current base rate

Relativities

AOI levels	current	indicated
less than 100,000	0.750	0.600
equal to or above 100,000	1.000	1.200

Territories	current	indicated
territory 1	0.800	0.850
territory 2	1.000	1.000

In-Force Exposures

AOI levels	Terr 1	Terr 2
less than 100,000	1,500	4,000
equal to or above 100,000	1,500	3,000

	current	indicated
Fixed Expense Fee	0	0

Prelimiary Step: rebase the indicated relativies so the base level relativity for each variable is 1.0

AOI levels	current	indicated
less than 100,000	0.750	0.500
equal to or above 100,000	1.000	1.000
		* rebased

Territories	current	indicated
territory 1	0.800	0.850
territory 2	1.000	1.000
		* rebased

Step 1 calculate the <u>current</u> average premium by rerating every combination of AOI x Territory (we can then infer the <u>proposed</u> average premium)

		current	current	current	in-force	current					
AOI	Territory	AOI fctr	Terr fctr	fixed fee	exposures	premium					
< 100K	1	0.750	0.800	0	1,500	1,125,000	= (base x	AOI x terr +	fee) x (in	-force expos	ures)
>= 100K	1	1.000	0.800	0	1,500	1,500,000					
< 100K	2	0.750	1.000	0	4,000	3,750,000					
>= 100K	2	1.000	1.000	0	3,000	3,750,000					
					10,000	10,125,000	====>	current avg	prem	=	1,012.50
proposed a	verage prer	mium	=	1,012.50	х	1.15	<====	apply	15%	increase	
			=	1,164.38							

Step 2 use an arbitrary <u>base seed value</u> B to calculate the <u>proposed</u> average premium by rerating every combination of AOI x Terr

		proposed	proposed	proposed	in-force	proposed	base seed value	=	1,000	
AOI	Territory	AOI fctr	Terr fctr	fixed fee	exposures	premium				
< 100K	1	0.500	0.850	0	1,500	637,500	= (base x AOI x terr + fee	e) x (in-fo	rce expos	ures)
>= 100K	1	1.000	0.850	0	1,500	1,275,000				
< 100K	2	0.500	1.000	0	4,000	2,000,000				
>= 100K	2	1.000	1.000	0	3,000	3,000,000				
					10,000	6,912,500	====> <u>seed</u> avg prer	n	=	691.25

Step 3 calculate the <u>final proposed base rate</u> by adjusting the base seed value appropriately

final proposed base rate

- = seed x (proposed avg prem indicated fee) / (seed avg prem indicated fee)
 = 1,000 x (1164.38 0) / (691.25 0)
 = 1,684.45 <== final answer
- **Note:** The actual exam problem assumed the fixed expense fee was 0 and also imposed a minimum premium requirement.

Pricing-14: AARD Method (Problem)

Reading: Werner 14: Implementation

Model: Text Example
Problem Type: AARD Method

Find Calculate the base rate required to achieve an average rate increase of

15%

Given current average premium 1,012.50

Relativities

AOI levels	current	indicated	expos.
less than 100,000	0.750	0.600	5,500
equal to or above 100,000	1.000	1.200	4,500

Territories	current	indicated	expos.
territory 1	0.800	0.850	3,000
territory 2	1.000	1.000	7,000

	current	indicated
Fixed Expense Fee	0	0

* rebased

Prelimiary Step: rebase the indicated relativies so the base level relativity for each variable is 1.0

AOI levels	current	indicated
less than 100,000	0.750	0.500
equal to or above 100,000	1.000	1.000

Territories	current	indicated
territory 1	0.800	0.850
territory 2	1.000	1.000

* rebased

Step 1 calculate the <u>product</u> of the exposure-weighted averages of the rebased indicated relativities: $\bar{S}(p)$ AOI average relativity = 0.7250
Territory average relativity = 0.9550
0.6924 <==== product = $\bar{S}(p)$ Step 2 calculate the proposed average premium: $\bar{P}(p)$ $\bar{P}(p)$ = (current average premium) x (1+ rate change)
= 1,012.50
= 1,164.38

Step 3 calculate the proposed base rate B(p)

Pricing-14: A(Δ)ARD Method (Problem)

Reading: Werner 14: Implementation

Model: Text Example Problem Type: $A(\Delta)$ ARD Method

Find Calculate the base rate required to achieve an average rate increase of

15%

Given current base rate 1,250 current average premium 1,012.50

Relativities

AOI levels	current	indicated	expos.
less than 100,000	0.750	0.600	5,500
equal to or above 100,000	1.000	1.200	4,500

Territories	current	indicated	expos.
territory 1	0.800	0.850	3,000
territory 2	1.000	1.000	7,000

	current	indicated
Fixed Expense Fee	0	0

Prelimiary Step: rebase the indicated relativies so the base level relativity for each variable is 1.0

AOI levels	current	indicated	ind / curr
< 100,000	0.750	0.500	0.667
>= 100,000	1.000	1.000	1.000
exposure-wtd total	0.863	0.725	

Territories	current	indicated	ind / curr
territory 1	0.800	0.850	1.063
territory 2	1.000	1.000	1.000
exposure-wtd total	0.940	0.955	•

Step 1 calculate the product of (total indicated) / (total current) across all rating vars: 1+Δs%

AOI: (total indicated) / (total current) = 0.725 / 0.863 = 0.841 Territory: (total indicated) / (total current) = 0.955 / 0.940 = $\frac{1.016}{0.854}$ = 1+ Δ s%

Step 2 calculate the proposed average premium: $\bar{P}(p)$

 $\bar{P}(p)$ = (current average premium) x (1+ rate change) = 1,012.50 x 1.15

= 1,164.38

Step 3a calculate the proposed base rate adjustment

adjstment = $[\bar{P}(p) - A(p)] / [\bar{P}(c) - A(c)]$ x 1/(1+ Δ s%) = 1.150 x 1.171

= 1.347

Step 3b calculate the proposed base rate B(p)

B(p) = B(c) x adjustment

1,250 x 1.347

= 1,683.27

Reading: Werner 14: Implementation Pricing-14: Limiting Premium Effect - Non-Base Level (Problem)

Model: Text Example

Problem Type: Limiting Premium Effect of a Single Variable (Non-Base Level)

Find Calculate the relativities that satisfy the given requirements.

overall rate change	15%
maximum premium increase for any level of the rating variable	20%

Given Rating variable information prior to capping

level	premium	current	indicated
Α	138,000	0.80	0.90
В	659,000	1.00	1.00
С	203,000	1.20	1.25
total	1,000,000		

Step 1 calculate total % change for each rating variable level

 (1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
level	premium	current	indicated	change	off-bal	overall	total chg	new prem
Α	138,000	0.80	0.90	12.50%	0.9749	15%	26.13%	174,063
В	659,000	1.00	1.00	0.00%	0.9749	15%	12.12%	738,855
С	203,000	1.20	1.25	4.17%	0.9749	15%	16.79%	237,082
total	1,000,000			2.57%	0.9749	15%	15.00%	1,150,000

= Δs%

(5) = (4) / (3) - 1.0(Tot5) = (5) weighted by (2)

(6) = 1.0 / (1.0 + (Tot5)) = off-balance = $1 / (1 + \Delta s\%)$

(7) = given

(8) = $[1.0 + (5)] \times (6) \times [1.0 + (7)] - 1.0$

 $(9) = (2) \times (1.0 + (8))$

Step 2a cap relativity for non-base level A so that total change doesn't exceed

20% by solving for R below:

R / current x off-bal x (1 + overall) = 1+ max

R / 0.8 x 0.9749 x 1.15 = 1.20 ====> R = 0.8562 new indicated relativity for level A

Step 2b calculate the premium shortfall created by the cap in step 2a

revised premium for A = (9) x R / (4)= 174,063 x 0.8562 / 0.9000

165,600

shortfall = 174,063 - 165,600 = 8,463 <==== premium shortfall

Step 3a redistribute this shortfall across levels B and C by increasing the base rate by a proportional amount

premium for levels B & C = 738,855 + 237,082 = **975,937**

required base rate increase = 8,463 / 975,937 = 0.867% <==== base rate increase

Step 3b BUT, we must now back out this base rate increase from level A otherwise the cap will be exceeded by that same amount

final indicated relativity for level A = R / (1 + base rate increase)

= 0.8562 / **1.00867**

= 0.8489 <==== final answer for proposed Level A relavitiy

Note: Relativities for B & C are equal to the original indication

Reading: Werner 14: Implementation Pricing-14: Limiting Premium Effect - Base Level (Problem)

Model: Text Example

Problem Type: Limiting Premium Effect of a Single Variable (Base Level)

Find Calculate the relativities that satisfy the given requirements.

overall rate change	15%
maximum premium increase for any level of the rating variable	20%

Given Rating variable information prior to capping

level	premium	current	indicated	
Α	138,000	0.80	0.65	
В	659,000	1.00	1.00	
С	203,000	1.20	1.05	
total	1,000,000			

Step 1 calculate total %-change for each rating variable level

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
level	premium	current	indicated	change	off-bal	overall	total chg	new prem	
Α	138,000	0.80	0.65	-18.75%	1.0540	15%	-1.52%	135,909	
В	659,000	1.00	1.00	0.00%	1.0540	15%	21.21%	798,788	<==== base level
С	203,000	1.20	1.05	-12.50%	1.0540	15%	6.06%	215,303	
total	1,000,000			-5.13%	1.0540	15%	15.00%	1,150,000	

= Δs%

(5) = (4)/(3) - 1.0(Tot5) = (5) weighted by (2)

(6) = $1.0 / (1.0 + (Tot5))$ = off-balance =
--

(7) = given

(8) = $[1.0 + (5)] \times (6) \times [1.0 + (7)] - 1.0$

(9) = $(2) \times (1.0 + (8))$

Step 2 since the BASE LEVEL change exceeds the cap, we will <u>adjust the base rate</u> to bring it down

base rate adjustment = (1 + max increase) / (1 + total base level change fom column (8))
= 1.20 / 1.2121
= 0.9900 <==== base rate adjustment

Step 2b calculate the premium shortfall created by the base rate decrease in step 2a

revised premium for B = (9) x (base rate decrease) = 798,788 x 0.9900 = 790,800 shortfall = 798,788 - 790,800 = 7,988 <==== premium shortfall

Step 3a redistribute this shortfall across levels A and C by increasing their relativities by a proportional amount

premium for levels A & C = 135,909 + 215,303 = 351,212

required relativity increase = 7,988 / 351,212 = 2.274% <==== A & C relativity increase

Step 3b BUT, we must now back out the base rate decrease from A & C so we don't "lose" any of the new premium

		original		relativity		base rate		adjusted	
	Level	indicated		adjustment		adjustment		relativities	
	Α	0.65	х	1.0227	/	0.9900	=	0.6715	<==== revised Level A relativity
	В	1.00						1.0000	<==== base level (no change)
	С	1.05	х	1.0227	/	0.9900	=	1.0847	<==== revised Level C relativity
								\land	
								/ \	
								final answe	rs

Pricing-15: Experience Modification - CGL (Problem)

Reading: Werner 14: Implementation

Model: Text Example Problem Type: Additive Expense Fee

Find Calculate the following:

fixed expense ratio (a) (b) fixed additive expense fee

Given countrywide premium (\$000s)

9,000 profit provision 6% average loss cost 220

expense	countrywide	
category	expenses (\$000s)	%-fixed
commissions	1,400	0%
general expenses	1,200	45%
other acquisition	500	100%
taxes	200	0%
licenses & fees	50	100%
TOTAL	3,350	

Step 1 calculate \$-fixed based on %-fixed

	\$-total		%-fixed		\$-fixed
commissions	1,400	х	0%	=	0
general expenses	1,200	х	45%	=	540
other acquisition	500	х	100%	=	500
taxes	200	х	0%	=	0
licenses & fees	50	х	100%	=	50
	3.350				1.090

Step 2a calculate the fixed expense ratio F

F = \$-fixed / CW prem = 1,090 / 9,000 = 12.1% <== final answer (a)

Step 2b calculate other ratios we'll need in Step 3

\$-total 37.2% CW prem 3,350 9,000 V + F + QV + F Q 37.2% 6.0% 43.2% V + Q V + F + QF 31.1% 43.2% 12.1%

Step 3a calculate P(p) [projected avg prem] and E(F)(p) [projected fixed expense] as intermediate steps

 $\vec{P}(p)$ = loss cost / (1-V-F-Q) = 220 / 56.8% = 387.48 $\vec{E}(F)(p)$ = $\vec{P}(p)$ x F = 387.48 x 12.1% = 46.93

Step 3b put everything together to get the final projected fixed additive expense fee A(p)

A(p) = E(F)(p) / (1-V-Q)= 46.93 / 68.9%= 68.12 <== final answer (b)

Note 1: The quantity (1-V-Q) is called the Variable Permissible Loss Ratio or VPLR.

Note 2: I used a "p" in parentheses (p) to indicate "projected" quantities. Strictly speaking, the "p" should be a subscript but it was too small to be legible in this spreadsheet.

werner 14: Implementation Pricing-15: Experience Modification - WC (Problem)
2015.Fall #11 (without minimum premium requirement) Reading:

Model:

Problem Type: Base Rate - Extension of Exposures Method

Find Calculate the base rate required to achieve an average rate increase of 15%

1,250 Given current base rate

Relativities

AOI levels	current	indicated
less than 100,000	0.750	0.600
equal to or above 100,000	1.000	1.200

Territories	current	indicated
territory 1	0.800	0.850
territory 2	1.000	1.000

In-Force Exposures

AOI levels	Terr 1	Terr 2
less than 100,000	1,500	4,000
equal to or above 100,000	1,500	3,000

	current	indicated
Fixed Expense Fee	0	0

Prelimiary Step: rebase the indicated relativies so the base level relativity for each variable is 1.0

AOI levels	current	indicated
less than 100,000	0.750	0.500
equal to or above 100,000	1.000	1.000

Territories	current	indicated
territory 1	0.800	0.850
territory 2	1.000	1.000
•		* rebased

* rebased

Step 1 calculate the <u>current</u> average premium by rerating every combination of AOI x Territory (we can then infer the <u>proposed</u> average premium)

		current	current	current	in-force	current					
AOI	Territory	AOI fctr	Terr fctr	fixed fee	exposures	premium					
< 100K	1	0.750	0.800	0	1,500	1,125,000	0 = (base x AOI x terr + fee) x (in-force exposures)				ures)
>= 100K	1	1.000	0.800	0	1,500	1,500,000					
< 100K	2	0.750	1.000	0	4,000	3,750,000					
>= 100K	2	1.000	1.000	0	3,000	3,750,000					
					10,000	10,125,000	====>	current avg	prem	=	1,012.50
							_				
proposed a	verage prer	mium	=	1,012.50	х	1.15	<====	apply	15%	increase	
			=	1.164.38							

Step 2 use an arbitrary base seed value B to calculate the proposed average premium by rerating every combination of AOI x Terr

		proposed	proposed	proposed	in-force	proposed	base seed value	=	1,000	
AOI	Territory	AOI fctr	Terr fctr	fixed fee	exposures	premium				
< 100K	1	0.500	0.850	0	1,500	637,500	= (base x AOI x terr + fee	e) x (in-fo	rce expos	ures)
>= 100K	1	1.000	0.850	0	1,500	1,275,000				
< 100K	2	0.500	1.000	0	4,000	2,000,000				
>= 100K	2	1.000	1.000	0	3,000	3,000,000				
					10,000	6,912,500	====> <u>seed</u> avg prer	n	=	691.25

Step 3 calculate the <u>final proposed base rate</u> by adjusting the base seed value appropriately

final proposed base rate

- = seed x (proposed avg prem indicated fee) / (seed avg prem indicated fee) = 1,000 x (1164.38 0) / (691.25 0)
- = 1,684.45 <== final answer

Note: The actual exam problem assumed the fixed expense fee was 0 and also imposed a minimum premium requirement.

Pricing-15: Loss-Rated Composite Rating (Problem)

Reading: Werner 14: Implementation

Model: Text Example
Problem Type: AARD Method

Find Calculate the base rate required to achieve an average rate increase of

15%

Given current average premium 1,012.50

Relativities

AOI levels	current	indicated	expos.
less than 100,000	0.750	0.600	5,500
equal to or above 100,000	1.000	1.200	4,500

Territories	current	indicated	expos.
territory 1	0.800	0.850	3,000
territory 2	1.000	1.000	7,000

	current	indicated
Fixed Expense Fee	0	0

Pricing-15: Loss-Rated Composite Rating (Solution)

Prelimiary Step: rebase the indicated relativies so the base level relativity for each variable is 1.0

AOI levels	current	indicated
less than 100,000	0.750	0.500
equal to or above 100,000	1.000	1.000

Territories	current	indicated
territory 1	0.800	0.850
territory 2	1.000	1.000
•		* rebased

* rebased

Step 1 calculate the <u>product</u> of the exposure-weighted averages of the rebased indicated relativities: $\bar{S}(p)$ AOI average relativity = 0.7250
Territory average relativity = 0.9550
0.6924 <==== product = $\bar{S}(p)$ Step 2 calculate the proposed average premium: $\bar{P}(p)$ $\bar{P}(p)$ = (current average premium) x (1+ rate change)

= 1,012.50 x 1.15 = 1,164.38

Step 3 calculate the proposed base rate B(p)

 $B(p) = (\vec{P}(p) - A(p)) / 5(p)$ = (1,164.38 - 0) / 0.6924 = 1,681.71 <== final answer

Pricing-15: Large Deductible Policies (Problem)

Reading: Werner 14: Implementation

Model: Text Example Problem Type: $A(\Delta)ARD$ Method

Find Calculate the base rate required to achieve an average rate increase of

15%

Given current base rate 1,250

current average premium

1,012.50

Relativities

AOI levels	current	indicated	expos.
less than 100,000	0.750	0.600	5,500
equal to or above 100,000	1.000	1.200	4,500

Territories	current	indicated	expos.
territory 1	0.800	0.850	3,000
territory 2	1.000	1.000	7,000

	current	indicated
Fixed Expense Fee	0	0

Prelimiary Step: rebase the indicated relativies so the base level relativity for each variable is 1.0

AOI levels	current	indicated	ind / curr
< 100,000	0.750	0.500	0.667
>= 100,000	1.000	1.000	1.000
exposure-wtd total	0.863	0.725	

Territories	current	indicated	ind / curr
territory 1	0.800	0.850	1.063
territory 2	1.000	1.000	1.000
exposure-wtd total	0.940	0.955	

Step 1 calculate the product of (total indicated) / (total current) across all rating vars: 1+Δs%

AOI: (total indicated) / (total current) = 0.725 / 0.863 = 0.841 Territory: (total indicated) / (total current) = 0.955 / 0.940 = $\frac{1.016}{0.854}$ = 1+ Δ s%

Step 2 calculate the proposed average premium: $\bar{P}(p)$

 $\vec{P}(p)$ = (current average premium) x (1+ rate change) = 1,012.50 x 1.15

= 1,164.38

Step 3a calculate the proposed base rate adjustment

adjstment = $[\bar{P}(p) - A(p)] / [\bar{P}(c) - A(c)]$ x 1/(1+ Δ s%) = 1.150 x 1.171

= 1.347

Step 3b calculate the proposed base rate B(p)

B(p) = B(c) x adjustment

1,250 x 1.347

= 1,683.27

Pricing-15: Retrospective Rating (Problem)

Reading: Werner 14: Implementation

Model: Text Example Problem Type: $A(\Delta)$ ARD Method

Find Calculate the base rate required to achieve an average rate increase of

15%

Given current base rate 1,250 current average premium

1,012.50

Relativities

AOI levels	current	indicated	expos.
less than 100,000	0.750	0.600	5,500
equal to or above 100,000	1.000	1.200	4,500

Territories	current	indicated	expos.
territory 1	0.800	0.850	3,000
territory 2	1.000	1.000	7,000

	current	indicated
Fixed Expense Fee	0	0

Prelimiary Step: rebase the indicated relativies so the base level relativity for each variable is 1.0

AOI levels	current	indicated	ind / curr
< 100,000	0.750	0.500	0.667
>= 100,000	1.000	1.000	1.000
exposure-wtd total	0.863	0.725	

Territories	current	indicated	ind / curr
territory 1	0.800	0.850	1.063
territory 2	1.000	1.000	1.000
exposure-wtd total	0.940	0.955	

Step 1 calculate the product of (total indicated) / (total current) across all rating vars: 1+Δs%

AOI: (total indicated) / (total current) = 0.725 / 0.863 = 0.841 Territory: (total indicated) / (total current) = 0.955 / 0.940 = $\frac{1.016}{0.854}$ = 1+ Δ s%

Step 2 calculate the proposed average premium: $\bar{P}(p)$

 $\vec{P}(p)$ = (current average premium) x (1+ rate change) = 1,012.50 x 1.15

= 1,164.38

Step 3a calculate the proposed base rate adjustment

adjstment = $[\bar{P}(p) - A(p)] / [\bar{P}(c) - A(c)]$ x 1/(1+ Δ s%) = 1.150 x 1.171

= 1.347

Step 3b calculate the proposed base rate B(p)

B(p) = B(c) x adjustment

1,250 x 1.347

= 1,683.27

Pricing-Appendix: HO Indication (Problem)

Reading: Werner Appendix B: Homeowners

Model: Text Example

Problem Type: Pure Premium Rate Indication for Homeowners

Find Calculate the indicated rate given the following information:

Given

effective date	2026	4	1
	year	month	day

0.0%

V: variable expense	20.0%	
Q: profit provision	7.0%	
E(F): fixed expenses	\$ 65.00	< through 2024

historical loss trend 4.0% projected loss trend 2.0% fixed expense trend 3.0%

exposure trend

erm	12	1
	months	ren

non-modeled cat-to-AIY ratio	0.350
2024 reinsurance cost	66,000
2024 reinsurance recoveries	30,000

^{*} assume the net per-exposure cost of reinsurance for the effective period is the same as for CY 2024

* modeled cat pure premium	34.31
	* projected

		non-cat			
		rpt loss		ULAE	AIY / EE
CY	EE	& ALAE	LDF	factor	exp fit
2020	730	215,000	1.00	1.050	256
2021	930	288,600	1.06	1.050	270
2022	990	336,400	1.10	1.050	284
2023	1,040	354,700	1.14	1.050	299
2024	1,090	435,700	1.20	1.050	315
2025					332
2026					350
2027					369

Pricing-Appendix: HO Indication (Solution)

Step 1	projected	ultimate	non-cat	pure premium	=	444.14	
Step 2a	projected	non-modeled	cat	pure premium	=	133.86	
Step 2b	projected	modeled	cat	pure premium	=	34.31	(given)
Step 3	projected	net	reins	pure premium	=	33.03	
Step 4	projected	fixed	expense	pure premium	=	69.47	
					total ====>	714.81	VPLR = 73.0%
				divide i	by VPLR ====>	979.19	<== final answer

Step 1 calculate projected <u>ultimate non-cat</u> pure premium

	trend	periods	non-cat	non-cat
	from CY	from 2024	ultimate	ultimate
	to 2024	to eff. per.	LOSS	Pure Pr.
2020	4	2.75	278,876	382.02
2021	3	2.75	381,542	410.26
2022	2	2.75	443,767	448.25
2023	1	2.75	466,272	448.34
2024	0	2.75	579,707	531.84
average of col		olumn ==>	444 14	

non-cat ultimate LOSS

= (non-cat rptd loss & ALAE) x LDF x ULAE x trends

= 215000 x 1 x 1.05 x (1.04)^4 x (1.02)^2.75

 $= 288600 \times 1.06 \times 1.05 \times (1.04)^3 \times (1.02)^2.75$

= 336400 x 1.1 x 1.05 x (1.04)^2 x (1.02)^2.75

= 354700 x 1.14 x 1.05 x (1.04)^1 x (1.02)^2.75

= 435700 x 1.2 x 1.05 x (1.04)^0 x (1.02)^2.75

Step 2a calculate projected <u>non-modeled cat</u> pure premium

```
cat-to-AIY-ratio
=
                                       AIY-to-EE
                                                             ULAE factor
      0.350
                                       364.25
                                                             1.050
      133.86
                 <== final answer for Step 2a
```

side calc to get appropriate value for AIY-to-EE:

AAD(eff. per.) 2027 - 04 - 01 The AAD (Average Accident Date) for the AIY-to-EE value must AAD(2026) 2026 - 07 - 01 line up with the AAD of the effective period. AAD(2027) 2027 - 07 - 01

0.25

AIY-to-EE is a weighted average of AIY-to-EE values for CY 2026 and CY 2027 where the weight given to CY 2026 is:

AIY-to-EE 0.25 0.75

```
Step 3 calculate the net reinsurance cost per exposure (assume no exposure trend so use exposures from 2024)
```

```
2024 reinsurance recoveries )
                    ( 2024 reinsurance cost
                                                                                                           EE for CY 2024
net cost
                                   66,000
                                                                30,000
                                                                                                               1,090
                             <== final answer for Step 3
```

Step 4 trend fixed expenses using AWD (since most fixed expenses are incurred when policy is written)

```
AWD(2024)
                         2024 - 07 - 01
AWD(Eff. Per.)
                         2026 - 10 - 01
 trend period
                            2.25
```

projected fixed expense pure premium

```
E(F) through 2024
                                 (1 + trend)^(trend period)
65.00
                                 (1.03) ^ 2.25
```

<== final answer for Step 4

364.25

Pricing-Appendix: WC Indication (Problem)

Reading: Werner Appendix D: Worker's Compensation

Model: Text Example

Problem Type: Loss Ratio Rate Indication for WC

Find Calculate the final company rate change using both industry and company data.

Given information required for step 1 of solution: PROJECTED LOSS COST PREMIUM

effective date:	2023	1	1	(year, month, day)
rates in effect for	12	months		
nolicy torm:	12	months		

industry annual Historical loss cost payroll Experience

* loss cost premium is already at CRL (Current Rate Level)

Experience Mod (HEM) AY premium change 2020 2,770 -0.5% 0.960 2021 5.0% 0.960 3,150 2022 2,610 4.0% 0.860

Projected Annual Wage Change (PAWC) 1.0% Expected Experience Modification (EEM) 0.930

information required for step 2 of solution: PROJECTED MEDICAL LOSS RATIO

projected medical fee schedule change: 1.0% = fee % change projected other medical change: 3.0% = other % change

portion of medical loss subject to fee schedule = m

80.0% use this fee % to calculate a weighted average

			Med Fee	Other
	Rptd	Med Loss	Sched	Medical
AY	Med Loss	LDF to Ult	Change	Change
2020	1,243	1.000	-13.0%	2.0%
2021	1,411	1.800	-2.0%	1.0%
2022	1,198	2.000	12.0%	2.0%

information required for step 3 of solution: INDUSTRY & COMPANY INDICATED RATE CHANGES

Step 3a indemnity cost loss ratio:	18.0%	Step 3b V + Q:	28.0%
LAE ratio to ult loss:	22.0%	expected loss cost difference:	4.0%
		current deviation:	1.880

Here are some notes on STEP 2 of the solution that didn't fit on the solution page:

- (5) = weighted average of (3) and (4) with weights m and (1-m)
- (6) = product of (1.0 + "lower" entries) from (5)
- (7) = m x (1.0 + med % change)^(trend period) + $(1 m) x (1.0 + other % change)^(trend period)$ = $0.8 x (1.01)^1.5 + 0.2 x (1.03)^1.5$
- (8) = $(1) \times (2) \times (6) \times (7)$
- (9) = (8) / (projected loss cost premium from Step 1b)

1.0150

calculate the projected loss cost premium (WC advisory loss costs) Step 1 trend period for 'step 2' in '2-step' trending 1a (AAD for latest available year) to (AAD of effective period) 2022 2024 to = 1.5000 years PAWC: trend factor (1 + 1.0%) ^ 1.5

1b calculate the 'projected loss cost premium'

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	
(this is the given information)		factor	expected					
	industry	annual	Hist.	to	future	experience	projected	
	loss cost	payroll	Exp.	current	wage level	mod	loss cost	
CY	premium	change	Mod (HEM)	wage level	change	factor	premium	
2020	2,770	-0.5%	0.960	1.0920	1.0150	0.9688	2,974.38	<==== final answers to step 1
2021	3,150	5.0%	0.960	1.0400	1.0150	0.9688	3,221.35	<==== final answers to step 1
2022	2,610	4.0%	0.860	1.0000	1.0150	1.0814	2,864.88	<==== final answers to step 1
							9,060.61	<==== final answers to step 1

- = (1.0 + (2)NextRow) x (4NextRow) = product of (1.0 + "lower" entries) from (2) (4)
- <==== trend factor from step 1a (5) = (1 + PAWC)^(trend period)
- (6) = EEM / (3) = EEM / HEM<==== this is like 'on-leveling' the experience modification
- (7) $= (1) \times (4) \times (5) \times (6)$

Notes: - column (4) is similar to 'step 1' in '2-step' trending

- column (5) is similar to 'step 2' in '2-step' trending
- column (6) is similar on-leveling premium except here we're 'on-leveling' the experience modification

Step 2 calculate the projected medical loss ratio

		(this is the given information)				(these are the calculated columns)					
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
ĺ						combined	factor to	combined	projected	projected	
				Med Fee	Other	effect of	current	effect of	ultimate	ultimate	
		Rptd	Med Loss	Sched	Medical	medical	med cost	projected	medical	medical	
	AY	Med Loss	LDF to Ult	Change	Change	trends	level	trend	loss	LR	
ĺ	2020	1,243	1.000	-13.0%	2.0%	-10.00%	1.085	1.021	1,376.60	46.28%	
	2021	1,411	1.800	-2.0%	1.0%	-1.40%	1.100	1.021	2,852.72	88.56%	
١	2022	1 198	2 000	12.0%	2.0%	10.00%	1 000	1 021	2 446 55	85 40%	

73.68% 6,675.87 == final ans totals ==>

Step 3 calculate the industry and company rate changes

```
industry indicated rate change
                                          indem LR
                    med LR
                                                       ) x (
                                                                   1 +
                                                                           LAE ratio
                       73.7%
                                             18.0%
                                                       ) x (
                                                                   1 +
    =
```

) - 1.0 22%) - 1.0 11.85% <==== industry rate change (assumes V+Q = 0)

proposed deviation from industry (expense & profit adjustment) x (operational adjustment)

> 1 / (1 - V - Q) x (1 + expected loss cost difference) =

1.4444

company indicated rate change (proposed deviation) / (current deviation) x (1 + industry chg) - 1.0

-14.06% <==== FINAL ANSWER!!

to step 2