Reading: Werner 12: Credibility

Model: Text Example
Problem Type: Harwayne's Method

Find Calculate the complement of credibility using Harwayne's method for:

state:	Α	and	state:	С
class:	1		class:	2

Given

state	class	expos	loss	PP
Α	1	100	500	5.0
	2	450	1,350	3.0
	3	150	600	4.0
	total	700	2,450	3.500
В	1	180	900	5.0
	2	420	3,990	9.5
	3	60	390	6.5
	total	660	5,280	8.000
С	1	90	1,215	13.5
	2	450	6,525	14.5
	3	630	9,450	15.0
	total	1,170	17,190	14.692
D	1	150	225	1.5
	2	90	360	4.0
	3	210	525	2.5
	total	450	1,110	2.467

* PP = Pure Premium

state:	Α
class:	1

Use Harwayne's method to find a complement of credibility for state A & class 1.

Step 1 calculate adjusted total PP for states B, C, D, using exposures from state A as weights

state A total expos.

state C

total

```
PP for state A:
                                             3.500
                                                                 given
adjusted PP for state B =
                                             8.214
                                                         =
                                                                 (100 \times 5 + 450 \times 9.5 + 150 \times 6.5)
                                                                                                                                       700
adjusted PP for state C =
                                           14.464
                                                         =
                                                                 (100 \times 13.5 + 450 \times 14.5 + 150 \times 15)
                                                                                                                                       700
adjusted PP for state D =
                                             3.321
                                                                 (100 \times 1.5 + 450 \times 4 + 150 \times 2.5)
                                                                                                                                       700
```

Step 2 calculate adjusted class 1 PP for states B, C, D, using the ratios of (state A PP) to (adjusted PP of each of states B, C, D)

class 1 PP

```
adjusted class 1 PP for state A
                                                                 not required because this is the base class
                                                        <====
adjusted class 1 PP for state B
                                   =
                                               2.130
                                                           =
                                                                     5.0
                                                                                  х
                                                                                         3.5 / 8.214
adjusted class 1 PP for state C
                                               3.267
                                                           =
                                                                     13.5
                                                                                         3.5 / 14.464
adjusted class 1 PP for state D
                                               1.581
                                                                      1.5
                                                                                         3.5 / 3.321
```

Step 3 calculate a new class 1 PP for the complement as a weighted average of Step 2 results using class 1 exposures as weights

```
new class 1 PP for complement = 2.178 = (180 x 2.13 + 90 x 3.267 + 150 x 1.581) / (180 + 90 + 150) (for state A) (final answer)
```

state:	С
class:	2

Now we'll repeat Harwayne's method but for state C & class 2.

Step 1 calculate adjusted total PP for states A, B, D, using exposures from state A as weights

```
expos.
PP for state A:
                                             3.692
                                                                  (90 \times 5 + 450 \times 3 + 630 \times 4)
                                                                                                                                       1,170
adjusted PP for state B =
                                             7.538
                                                                 (90 \times 5 + 450 \times 9.5 + 630 \times 6.5)
                                                                                                                                       1,170
adjusted PP for state C =
                                            14.692
                                                                 given
                                                       <====
adjusted PP for state D =
                                             3.000
                                                                                                                                       1,170
                                                                  (90 \times 1.5 + 450 \times 4 + 630 \times 2.5)
```

Step 2 calculate adjusted class 2 PP for states A, B, D, using the ratios of (state C PP) to (adjusted PP of each of states A, B, D)

```
class 2 PP
adjusted class 2 PP for state A
                                              11.938
                                                                     3.0
                                                                                         14.692 / 3.692
                                   =
                                                          =
adjusted class 2 PP for state B
                                   =
                                              18.515
                                                          =
                                                                     9.5
                                                                                         14.692 / 7.538
                                                                                  Х
adjusted class 2 PP for state C
                                                                 not required because this is the base class
                                   =
                                                        <====
adjusted class 2 PP for state D
                                                                                         14.692 / 3
                                              19.590
                                                           =
                                                                     4.0
```

Step 3 calculate a new class 2 PP for the complement as a weighted average of Step 2 results using class 2 exposures as weights

```
new class 2 PP for complement = 15.533 = (450 x 11.938 + 420 x 18.515 + 90 x 19.59) / (450 + 420 + 90) (for state C) (final answer)
```

Reading: Werner 12: Credibility

Model: Text Example
Problem Type: Harwayne's Method

Find Calculate the complement of credibility using Harwayne's method for:

state:	Α	and	state:	С
class:	1		class:	2

Given

state	class	expos	loss	PP
Α	1	150	1,050	7.0
	2	50	325	6.5
	3	150	825	5.5
	total	350	2,200	6.286
В	1	300	2,400	8.0
	2	180	900	5.0
	3	360	2,880	8.0
	total	840	6,180	7.357
С	1	180	2,700	15.0
	2	810	7,695	9.5
	3	450	3,600	8.0
	total	1,440	13,995	9.719
D	1	240	960	4.0
	2	300	1,050	3.5
	3	300	1,050	3.5
	total	840	3,060	3.643

* PP = Pure Premium

state:	Α
class:	1

Use Harwayne's method to find a complement of credibility for state A & class 1.

Step 1 calculate adjusted total PP for states B, C, D, using exposures from state A as weights

state A total expos.

state C

total

```
PP for state A:
                                             6.286
                                                                  given
adjusted PP for state B =
                                             7.571
                                                          =
                                                                  (150 \times 8 + 50 \times 5 + 150 \times 8)
                                                                                                                                         350
adjusted PP for state C =
                                            11.214
                                                          =
                                                                  (150 \times 15 + 50 \times 9.5 + 150 \times 8)
                                                                                                                                         350
adjusted PP for state D =
                                             3.714
                                                                  (150 \times 4 + 50 \times 3.5 + 150 \times 3.5)
                                                                                                                                         350
```

Step 2 calculate adjusted class 1 PP for states B, C, D, using the ratios of (state A PP) to (adjusted PP of each of states B, C, D)

class 1 PP

```
adjusted class 1 PP for state A
                                                                 not required because this is the base class
                                                        <====
adjusted class 1 PP for state B
                                   =
                                               6.642
                                                          =
                                                                     8.0
                                                                                 Х
                                                                                        6.286 / 7.571
adjusted class 1 PP for state C
                                               8.408
                                                          =
                                                                    15.0
                                                                                        6.286 / 11.214
adjusted class 1 PP for state D
                                               6.769
                                                                     4.0
                                                                                        6.286 / 3.714
```

Step 3 calculate a new class 1 PP for the complement as a weighted average of Step 2 results using class 1 exposures as weights

```
new class 1 PP for complement = 7.126 = (300 x 6.642 + 180 x 8.408 + 240 x 6.769) / (300 + 180 + 240) (for state A) (final answer)
```

state:	С
class:	2

Now we'll repeat Harwayne's method but for state C & class 2.

Step 1 calculate adjusted total PP for states A, B, D, using exposures from state A as weights

```
expos.
PP for state A:
                                             6.250
                                                                 (180 \times 7 + 810 \times 6.5 + 450 \times 5.5)
                                                                                                                                      1,440
adjusted PP for state B =
                                             6.313
                                                                 (180 \times 8 + 810 \times 5 + 450 \times 8)
                                                                                                                                      1,440
                                                         =
adjusted PP for state C =
                                             9.719
                                                                 given
                                                       <====
                                                                                                                                      1,440
adjusted PP for state D =
                                             3.563
                                                                 (180 \times 4 + 810 \times 3.5 + 450 \times 3.5)
```

Step 2 calculate adjusted class 2 PP for states A, B, D, using the ratios of (state C PP) to (adjusted PP of each of states A, B, D)

```
class 2 PP
adjusted class 2 PP for state A
                                              10.108
                                                                     6.5
                                                                                         9.719 / 6.25
                                   =
                                                           =
adjusted class 2 PP for state B
                                   =
                                               7.698
                                                           =
                                                                     5.0
                                                                                         9.719 / 6.313
                                                                                  Х
adjusted class 2 PP for state C
                                                                  not required because this is the base class
                                   =
                                                         <====
adjusted class 2 PP for state D
                                                                                         9.719 / 3.563
                                               9.548
                                                           =
                                                                     3.5
```

Step 3 calculate a new class 2 PP for the complement as a weighted average of Step 2 results using class 2 exposures as weights

```
new class 2 PP for complement = 8.973 = (50 x 10.108 + 180 x 7.698 + 300 x 9.548) / (50 + 180 + 300) (final answer)
```