Reading: Werner 14: Implementation

Model: Text Example

Problem Type: Limiting Premium Effect of a Single Variable (Non-Base Level)

Find Calculate the relativities that satisfy the given requirements.

overall rate change	5%
maximm premium increase for any level of the rating variable	15%

Given Rating variable information prior to capping

level	premium	current	indicated
Α	125,000	0.67	0.83
В	623,000	1.00	1.00
С	171,000	1.18	1.24
total	919,000		

Step 1 calculate total % change for each rating variable level

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
level	premium	current	indicated	change	off-bal	overall	total chg	new prem
Α	125,000	0.67	0.83	23.88%	0.9597	5%	24.84%	156,048
В	623,000	1.00	1.00	0.00%	0.9597	5%	0.77%	627,817
С	171,000	1.18	1.24	5.08%	0.9597	5%	5.90%	181,084
total	919,000			4.19%	0.9597	5%	5.00%	964,950
	•	•	•		•	•		•

= ∆s%

(5) = (4)/(3) - 1.0(Tot5) = (5) weighted by (2)

(6) = 1.0 / (1.0 + (Tot5)) = off-balance = $1 / (1 + \Delta s\%)$

(7) = given

(8) = $[1.0 + (5)] \times (6) \times [1.0 + (7)] - 1.0$

(9) = $(2) \times (1.0 + (8))$

Step 2a cap relativity for non-base level A so that total change doesn't exceed

15% by solving for R below:

R/current x off-bal x (1+overall) = 1+ max

R / 0.67 x 0.9597 x 1.05 = 1.15 ====> R = 0.7646 new indicated relativity for level A

Step 2b calculate the premium shortfall created by the cap in step 2a

revised premium for A = (9) x R / (4)= 156,048 x 0.7646 / 0.8300

= 143,750

shortfall = 156,048 - **143,750** = **12,298** <==== premium shortfall

Step 3a redistribute this shortfall across levels B and C by increasing the base rate by a proportional amount

premium for levels B & C = 627,817 + 181,084 = **808,902**

required base rate increase = 12,298 / 808,902 = 1.520% <==== base rate increase

Step 3b BUT, we must now <u>back out this base rate increase</u> from level A otherwise the cap will be exceeded by that same amount

final indicated relativity for level A = R / (1 + base rate increase)

= 0.7646 / 1.01520

= 0.7531 <==== final answer for proposed Level A relavitiy

Reading: Werner 14: Implementation

Model: Text Example

Problem Type: Limiting Premium Effect of a Single Variable (Non-Base Level)

Find Calculate the relativities that satisfy the given requirements.

overall rate change				
maximm premium increase for any level of the rating variable	20%			

Given Rating variable information prior to capping

level	premium	current	indicated	
Α	132,000	0.68	0.85	
В	724,000	1.00	1.00	
С	155,000	1.18	1.24	
total	1,011,000			

Step 1 calculate total % change for each rating variable level

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
level	premium	current	indicated	change	off-bal	overall	total chg	new prem
Α	132,000	0.68	0.85	25.00%	0.9611	12%	34.56%	177,618
В	724,000	1.00	1.00	0.00%	0.9611	12%	7.65%	779,365
С	155,000	1.18	1.24	5.08%	0.9611	12%	13.12%	175,337
total	1,011,000			4.04%	0.9611	12%	12.00%	1,132,320

= Δs%

(5) = (4)/(3)-1.0(Tot5) = (5) weighted by (2)

= 1.0 / (1.0 + (Tot5))= off-balance $= 1/(1 + \Delta s\%)$ (6)

(7) = given

(8) $= [1.0 + (5)] \times (6) \times [1.0 + (7)] - 1.0$

 $= (2) \times (1.0 + (8))$ (9)

Step 2a cap relativity for non-base level A so that total change doesn't exceed

20% by solving for R below:

R / current off-bal (1 + overall) 1+ max R / 0.68 0.9611 1.12 1.20

0.7580 new indicated relativity for level A

Step 2b calculate the premium shortfall created by the cap in step 2a

revised premium for A (9) (4) 177,618 0.7580 0.8500 158,400

shortfall 177,618 158,400 19,218 <=== premium shortfall

Step 3a redistribute this shortfall across levels B and C by increasing the base rate by a proportional amount

premium for levels B & C 779,365 175,337 954,702

required base rate increase 19,218 954,702 **2.013**% <==== base rate increase

Step 3b BUT, we must now <u>back out this base rate increase</u> from level A otherwise the cap will be exceeded by that same amount

final indicated relativity for level A (1 + base rate increase) 0.7580 1.02013

<==== final answer for proposed Level A relavitiy