Reading: Werner 14: Implementation

Model: Text Example

Problem Type: Limiting Premium Effect of a Single Variable (Base Level)

Find Calculate the relativities that satisfy the given requirements.

	overall rate change	9%
Ī	maximum premium increase for any level of the rating variable	18%

Given Rating variable information prior to capping

level	premium	current	indicated
Α	549,000	0.85	0.69
В	316,000	1.00	1.00
С	170,000	1.33	1.17
total	1,035,000		

Step 1 calculate total %-change for each rating variable level

(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
level	premium	current	indicated	change	off-bal	overall	total chg	new prem	
Α	549,000	0.85	0.69	-18.82%	1.1359	9%	0.50%	551,762	
В	316,000	1.00	1.00	0.00%	1.1359	9%	23.81%	391,234	<==== base level
С	170,000	1.33	1.17	-12.03%	1.1359	9%	8.91%	185,154	
total	1,035,000			-11.96%	1.1359	9%	9.00%	1,128,150	

= ∆s%

(5) = (4) / (3) - 1.0(Tot5) = (5) weighted by (2)

(6) = 1.0 / (1.0 + (Tot5)) = off-balance = $1 / (1 + \Delta s\%)$

(7) = given

(8) = $[1.0 + (5)] \times (6) \times [1.0 + (7)] - 1.0$

(9) = $(2) \times (1.0 + (8))$

Step 2 since the BASE LEVEL change exceeds the cap, we will <u>adjust the base rate</u> to bring it down

base rate adjustment = (1 + max increase) / (1 + total base level change fom column (8))
= 1.18 / 1.2381
= 0.9531 <==== base rate adjustment

Step 2b calculate the premium shortfall created by the base rate decrease in step 2a

revised premium for B = (9) x (base rate decrease) = 391,234 x 0.9531 = 372,880

shortfall = 391,234 - **372,880** = **18,354** <==== premium shortfall

Step 3a redistribute this shortfall across levels A and C by increasing their relativities by a proportional amount

premium for levels A & C = 551,762 + 185,154 = 736,916

required relativity increase = 18,354 / 736,916 = 2.491% <==== A & C relativity increase

Step 3b BUT, we must now back out the base rate decrease from A & C so we don't "lose" any of the new premium

	original		relativity		base rate		adjusted	
Level	indicated		adjustment		adjustment adjustment re		relativities	
Α	0.69	х	1.0249	/	0.9531	=	0.7420	<==== revised Level A relativity
В	1.00						1.0000	<==== base level (no change)
С	1.17	х	1.0249	/	0.9531	=	1.2582	<==== revised Level C relativity
							\land	
							/ \	
							1	
							final answe	rs

Reading: Werner 14: Implementation

Model: Text Example

Problem Type: Limiting Premium Effect of a Single Variable (Base Level)

Find Calculate the relativities that satisfy the given requirements.

overall rate change	5%
maximum premium increase for any level of the rating variable	9%

Given Rating variable information prior to capping

level	premium	current	indicated
Α	530,000	0.90	0.79
В	357,000	1.00	1.00
С	184,000	1.25	1.06
total	1,071,000		

Step 1 calculate total %-change for each rating variable level

_	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
	level	premium	current	indicated	change	off-bal	overall	total chg	new prem	
	Α	530,000	0.90	0.79	-12.22%	1.0948	5%	0.90%	534,795	
	В	357,000	1.00	1.00	0.00%	1.0948	5%	14.95%	410,389	<==== base level
	С	184,000	1.25	1.06	-15.20%	1.0948	5%	-2.52%	179,366	
	total	1,071,000			-8.66%	1.0948	5%	5.00%	1,124,550	

= ∆s%

(5) = (4)/(3) - 1.0(Tot5) = (5) weighted by (2)

(6) = 1.0 / (1.0 + (Tot5)) = off-balance = $1 / (1 + \Delta s\%)$

(7) = given

(8) = $[1.0 + (5)] \times (6) \times [1.0 + (7)] - 1.0$

 $(9) = (2) \times (1.0 + (8))$

Step 2 since the BASE LEVEL change exceeds the cap, we will <u>adjust the base rate</u> to bring it down

base rate adjustment = (1 + max increase) / (1 + total base level change fom column (8))
= 1.09 / 1.1495
= 0.9482 <==== base rate adjustment

Step 2b calculate the premium shortfall created by the base rate decrease in step 2a

revised premium for B = (9) x (base rate decrease)

= 410,389 x 0.9482

= 389,130

shortfall = 410,389 - **389,130** = **21,259** <=== premium shortfall

Step 3a redistribute this shortfall across levels A and C by increasing their relativities by a proportional amount

premium for levels A & C = 534,795 + 179,366 = **714,161**

required relativity increase = 21,259 / 714,161 = 2.977% <=== A & C relativity increase

Step 3b BUT, we must now back out the base rate decrease from A & C so we don't "lose" any of the new premium

	original		relativity		base rate		adjusted	
Level	indicated		adjustment		adjustment		relativities	
 Α	0.79	х	1.0298	/	0.9482	=	0.8580	<==== revised Level A relativity
В	1.00						1.0000	<==== base level (no change)
С	1.06	x	1.0298	/	0.9482	=	1.1512	<==== revised Level C relativity
							\land	
							/ \	
							final answe	rs